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Samenvatting.

Gebaseerd op algemene uitgangspunten van de continuum-mechanica en de
thermodynamica, zijn constitutieve vergeli jkingen geformuleerd voor
elastisch-plastische vervormingen.

Energie—-dissipatie en fase-transformaties zijn tevens in het wiskundig
model verwerkt.

Aangetoond wordt dat kinematische versteviging bij grote vervormingen kan
worden beschreven met een fractiemodel bestaande uit twee fracties.

Een gemengd Eulers-Lagrangiaanse eindige elementen methode is ontwikkeld
waarin de lokatie van knooppunten kan worden aangepast onafhankeli jk van
de materiéle verplaatsingen. Numerieke problemen als gevolg van grote
element-vervormingen, zoals kunnen optreden bij de ”Updated Lagrange”
methode, kunnen worden vermeden. Bewegingen van (vrije) oppervlakken
kunnen in rekening worden gebracht door de lokatie van knooppunten op een
dergeli jk oppervlak zodanig aan te passen dat deze op het oppervlak

bli jven.

Door introduktie van een lokale en een gewogen globale middelingsprocedure
(smoothing) kunnen numerieke instabiliteiten voorkomen worden.

De methode is toegepast bij simulaties van een stuikproces, een draadtrek-
proces en een hardingsproces van staal. De resultaten van de simulatie van
een stuikproces zijn vergeleken met de resultaten van een in het
laboratorium uitgevoerd experiment. Simulatie en experiment stemmen goed

met elkaar overeen.



Summary.

A formulation for elastic-plastic constitutive equations is given based on
principles of continuum thermo-mechanics and thermodynamics.

Energy dissipation and phase changes are included in the mathematical
model. It is shown that kinematic hardening can be described properly for
large deformations, by a two-fractions model.

A mixed Eulerian-Lagrangian finite element method has been developed by
which nodal point locations may be adapted independently of the material
displacement. Numerical problems, due to large distortions of elements, as
may occur in the case of an Updated Lagrangian method, can be avoided,
movement of (free) surfaces can be taken into account by adapting nodal
surface point locations in a way that they remain on the moving surface.
Local and weighed global smoothing are introduced in order to avoid
numerical instabilities.

Applications are shown by simulations of an upsetting process, a wire
drawing process and a steel quenching process. The results of the
simulation of the upsetting process show satisfactory agreement with the

results of an experiment carried out.
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LIST OF SYMBOLS

a, b, — parameters in velocity field and
AX, Ay’ Al’ A2 displacement field
A - transformation tensor of a line element from the

reference state to the current state
B - transformation tensor from the current state to the

natural reference state

E - third order tensor in the relation between strain
rate and nodal point velocity
c, ck, c* - specific heat
Cb - bulk modulus .
C - strain tensor C =B B
Cl’CZ’C3 - invariants of C
D - rate of deformation tensor
QP - rate of plastic deformation tensor
e, ek — internal energy
e - unit base vector
E — Young’s modulus
f — body force per unit mass
fN - nodal point generalized force
F — free energy
g - metric tensor of the natural reference state
g=8" B
g - determinant of g
G — shear modulus
h, hO — hardening modulus
Hk - hardening parameter
H — fourth order identity temsor H : o = o for any o
I - second order identity tensor 1 e v =V for any v
J - Jacobian
J2 - second invariant of the deviatoric stress tensor (s)
K - fourth order ’transposed identity’ tensor
K:0o= gT for any o
EMN — element sub—matrix representing the relation be-

tween nodal displacement rate and nodal force rate
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element sub-matrix representing the rate of change
of the outer surface of an element loaded by exter-
nal surface traction

length of a line element

elasticity tensor for small elastic deformation
elasticity tensor for large elastic deformation
elasto-plasticity tensor

thermo-mechanical exertion tensor

second order tensor, as a factor of the yield ten-
sor Y

unit normal vector of a surface

factor in the yield tensor

isotropic stress, first invariant of the Cauchy
stresstensor o

plasticity tensor

components of an element sub-matrix related to the
internal energy rate

function of the temperature in the free energy
components of an element sub-matrix related to dis-
sipation

virtual heat rate

constants in the internal energy

material rotation tensor

components of an element sub-matrix related to ther-
mal expansion

nodal point reaction force vector

unbalance ratio of prescribed nodal forces and no-
dal reaction forces

thermal unbalance ratio of external and internal
nodal point energy flow

entropy

deviatoric stress tensor s= oc-1/31 tr o
time

surface traction

absolute temperature

nodal point temperature
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ordered collection of nodal point temperatures,
regarded as components of a multi-dimensional vec-
tor

material displacement vector

components of a material displacement vector
symmetric deformation tensor obtained from a polar
decomposition of B=U R

ordered collection of nodal point degrees of free-
dom (velocity and temperature rate)

material velocity vector

material velocity vector at a nodal point
components of a velocity vector

ordered collection of nodal point velocities
volume of the current state

volume of the reference state

weight factor for global smoothing

virtual power

vector representing the current location of a
material particle

initial or reference location of a material par-
ticle

coordinates in the current state

coordinates in the initial or reference state
yield tensor

tensor related to thermal exertion of yielding
tensor related to density changes in elasto-plastic
deformation

tensor related to recovery due to thermal effect

coefficient of thermal expansion

internal backstress or orientation tensor represen-
ting anisotropic yielding and hardening

parameter in a formula for the weightfactor for
global smoothing

shear strain in simple shear

virtual power, etc.

prefix for an increment

Euler-Almansi strain tensor



€, £, ¢ — components of the Euler-Almansi strain tensor

€, ek — equivalent plastic strain
Ck - mass fraction
A - parameter in time dependent plasticity (creep)
A — thermal conductivity tensor
AMN — components of an element sub-matrix related to
thermal conductivity
— parameter in time independent plasticity
- Poisson’s ratio
3 — dissipation function related to time dependent
plasticity (creep)
e, pk — density
e, - reference density
Pr> Pr - density in a stress-free state
o, gk — Cauchy stress tensor
o’ - Kirchhoff stress tensor
gv - corotational Jaumann rate (of the stress tensor)
o, — yleld stress
[ — yleld surface
? - heat flux vector
¢e — rate of change of the internal energy due to irri-
versible phase transformations
¢M — nodal point thermal energy flow
@d — function of state variables related to dissipation
X - yleld-potential
wk — volume fraction
Wk — finite element interpolation function

- spintensor

pre-gradient operator vector
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- post-gradient operator vector



I. INTRODUCTION.

Many products of complex shape are made by forming processes. The
designers of these processes demand mathematical models in order to obtain
a better understanding of a process. The objectives are to obtain products
which satisfy the required specifications and of course to lower the costs
by improving the design and durability of tools.

Mathematical models of these processes are based on the principles of
continuum thermo—-mechanics. Equations derived from these principles are
very complicated.

In general there are no exact solutions to these equations so one has to
approximate. Formerly, these approximations usually had to do with
properties of the material. For instance, elastic deformations are
neglected (rigid-plastic solids), in many cases strain hardening effects
are not taken into account (perfectly plastic solids), and the material is
assumed to be isotropic. After these simplifications it is often not yet
possible to find analytical solutions to the equations. Approximate
solutions are found based on upper- and lowerbound criteria and slip-line
theory.

Solutions given in handbooks concerning engineering plasticity are based
on these approximations. Many processes are analysed in this way by Avizur

[3], Mellor and Johnson [36], Rowe [43].

After computers became available, numerical solution procedures have been
developed.

The evolution of these procedures occurs in two fields. The first one is
based on the upper-bound criterion and hence rigid-plastic material
properties are used. Much work in this field has been done for instance by
Kobayashi [27].

The second field is based on extension of small strain elastic-plastic
theories to large plastic deformations.

One of the first developments in this field was published by Hibbit,
Marcal and Rice [15] in 1970. Improvements were made by Mc. Meeking and

Rice [34] in 1975. They introduced the updated-Lagrange approach.

Approximations based on rigid-plastic material models are provided by

rather simple equations as compared to those based on elastic-plastic



material models. Particularly when no strain-hardening is taken into
account, the solution for the current state is independent from the
history, similar to Newtonian viscous flow problems.

However, a disadvantage of the rigid-plastic approach is that an iteration
procedure is required which will not converge unconditionally. Besides
assumptions have to be made as to the area in which plastic deformations
are concentrated in order to avoid numerical problems due to a vanishing
rate of deformation in (rigid) parts of a workpiece.

Another disadvantage of the rigid-plastic approach is that residual
stresses cannot be predicted and therefore no prediction can be given for

elastic springback in a formed product.

Constitutive equations for large elastic-plastic deformations are rather
complicated. Widely used are equations obtained from an extension of small
strain small rotation theory by replacing the strain rate tensor by the
rate of deformation tensor, and the stress rate tensor by the corotational
Jaumann rate of the Cauchy stress tensor [14, 26, 38, 44, 49]. This
extended theory results into equations which are valid as long as elastic

strains are small.

Anisotropic strain hardening can be taken into account by the
Prager/Ziegler kinematic hardening model [41, 50]. Extension of this small
strain model to large deformations by replacing the increment of the shift
tensor by the Jaumann rate, and the plastic strain increment by the rate
of plastic deformation tensor, leads to unrealistic predictions. Nagtegaal
and De Jong [39] showed that in a simple shear test, there is an
oscillating shear stress response. They proposed a modified shift rule by
introducing an anisotropic hardening modulus which vanishes for increasing
deformation. However, it can be shown that oscillations are suppressed
only if the hardening modulus vanishes within a sufficiently small strain
range. Hence for (common) materials which obey a nonvanishing hardening

modulus, the modified model of Nagtegaal and De Jong cannot be applied.

Besseling observed that a kinematic hardening model can be regarded as a
composition of an elastic ideally plastic fraction and a purely elastic
fraction [7].

In the case of large deformation the elastic fraction is subjected to

10



large elastic deformations. Besseling found this unrealistic and therefore
he rejected the kinematic hardening mode. Nevertheless it is interesting
to pay some more attention to the two-fractions model in relation to the
kinematic hardening model.

In a shear test the ideally plastic fraction yields a constant shear
stress, hence the hardening is obtained from the elastic fraction. If for
the elastic fraction a linear relation is assumed between the Jaumann rate
of the stress tensor and the rate of deformation tensor, then it can be
shown that in a simple shear test, the stress response is determined by
the same differential equations as those for the shift tensor given by
Nagtegaal and De Jong (see section 3.1.).

The solution to these equations yields an oscillating shear stress
response. At this stage it becomes interesting whether the assumed linear
relation between the Jaumann stress rate and the rate of deformation
tensor is valid for large elastic deformation. In section 3.1. it is shown
that this relation results into a stress response dependent on the path of
deformation and should therefore be rejected on the basis of thermodynamic
principles.

In section 3.2. is shown that in a simple shear test no oscillations are
predicted if the small elastic fraction satisfies a thermodynamically
valid stress-strain relation. Consequently a modified shift rule for
kinematic hardening can be derived from this adapted two fraction model

which is given in section 3.2.

Besides hardening, heat conduction and heat production due to plastic
deformation and friction, may largely affect a forming process. In
processes at high temperature, also phase changes may occur.

In order to be able to simulate these kinds of nonisothermal processes,
constitutive equations must be applied in which thermal effects are taken
into account.

The natural reference state theory of Besseling [5] includes all these
thermal effects. Constitutive equations used in this thesis are based on
this theory summarized in section 3. 3.

This theory has been adopted because it was proved by Van der Heyden and
Besseling [18] that in the case of time independent plasticity, the
results are identical to those in the theory developed by Lee [28]. The

JZ— flow theory developed by Budiansky and Hutchinson [16] is included as

11



a special case.

Extensions are given with respect to materials which do not satisfy the
normality rule and may show inelastic density changes such as apply to
soll mechanics.

In section 3.4. constitutive equations for isotropic materials are derived

which are not restricted to small elastic deformations.

A finite element formulation for numerical simulation of thermo-mechanical
forming processes is given in section 4. An incremental procedure is used
in which the element mesh and state variables are adapted after each
increment. If these adaptations are carried out according to the updated
Lagrange method [34, 38], numerical problems may arise due to large dis-
torsion of elements. Besides, a simultaneous simulation of workpiece and
tool cannot be carried out if slip occurs. This restriction also applies
to the natural formulation presented by Argyris and Doltsinis [1, 2].

A simultaneous analysis of workpiece and tool is of particular interest in
problems with considerable heat conduction and heat production, as well as
in problems where deformations of the tool cannot be neglected (rolling of
tin-plate). Therefore a procedure has been developed in which nodal point
locations can be (incrementally) adapted independent of the material
displacement increments. Conditions for free (or forced) surface movements
can be satisfied. An updated Lagrange approach as well as an Eulerian
approach can be regarded as special cases of the procedure.

Therefore it is called the mixed Eulerian-Lagrangian formulation.

The procedure was first presented by the author in 1982 [20]. In section
4.3. improvements are given by introducing weighed global smoothing. This
improved procedure has been verified by a large number of numerical

simulations of a strain propagation problem.

In section 5 a number of simulations of real forming processes are shown.

The predictions for an upsetting process are verified by an experiment.

12



IT. KINEMATICS, DYNAMICS AND ENERGY.

The mathematical description of finite deformations is based on the

principles of continuum mechanics. In this section the basic equations of

continuum thermo-mechanics will be summarized briefly. A more extensive

description is given in [6, 9, 12, 33, 40, 52].

The material of a body is supposed to consist of a continuous distribution

of particles (or volume elements).

The motions of these particles are described as a transition from a

reference state (or reference geometry) to the current state. Say that the

position of a particle in the reference state is given by a vector X and

the current position by a vector x . We can express the current position

as a function of the reference position and the time t

X = X (X, t) (2.

This function has for any time t a uniquely defined inverse

)N(=)N(()N<,t) (2.

The velocity of a particle is defined by

dx ax

Y=X T4t T ‘et X

The transition of a line element from the reference state to the

state, is defined by

where A is a second order tensor given by

ax
A= (ﬁ) ¢ (2.
The length dl of a line element dx 1is found from
2 T
(d1)” = dx » dx = dX « A" = A « dX (2.

The tensor éT e A is known as the Green’s strain tensor.

() (2.

dx = A e« dX (2.

1.2)

1.3)

current

1.4)

1.5)

1.6)

13



The rate of change of the line element dx follows from

. on

(dg) = Ty . d§ (2.1.7)
where

A 8 ox 8 ox ov  0Ox ov

ﬁ — ﬁ (ﬁ) - ﬁ (ﬁ) = & . ﬁ = & (] é (218)

Substitution of (2.1.8) and (2.1.4) into (2.1.7) yields

. . ov
(dx) = dx = ~ e dx (2.1.9)

8x X
The partial derivative with respect to x is known as the gradient and can

be denoted as a dyadic product.

ov

= =W (2.1.10)

This gradient can be subdivided into a symmetric part and a antisymmetric

part
D=1 (v Vv (2.1.11)
and
Q=2 (v V-V v (2.1.12)

The tensors D and Q are known as the rate of deformation tensor and the
spintensor respectively.

The determinant of the transition tensor A is called the Jacobian

J = det A

The rate of change of J can be expressed, by applying eqn. (A 53)

of appendix A, as

-T

Toh=0naT: wVemn=0trvv)

e
| >e
I}

=JA

or

—trD=v eV (2.1.14)

e

The material rate of change of an arbitrary field variable & can be

written as

14



o do ad ad ad ~
g -0 (& -02,0, -
dt at” X at ax dt
or
o_@ .
¢ = 3t + v ? ¢ (2.1.15)

The material rate of change of a volume integral or functional, which

depends on &, can be written as

4 Toav= [ (8J+ oD av_ = [ (® + & tr D) dv (2.1.16)

dt V) V) V)
o

With the kinematic relations and definitions of the preceding we can
formulate the basic equations of continuum thermomechanics as follows.

Conservation of mass is expressed by

-_J - trp=F .y (2.1.17)
P J - ~ -

where p is the mass density.

Balance of momentum can be written as

(2.1.18)

<.

go§+p£:p

where o 1is the symmetrical Cauchy stress tensor, and f a body force

per unit of mass.
Conservation of energy (first law of thermodynamics) is expressed by

c:D-pe="1- ¢ (2.1.19)

where e 1is the internal energy per unit mass and ¢ is the heat flux
due to conduction.
The entropy production (second law of thermodynamics) must satisfy the

condition
. 4
p s + Y. () > o (2.1.20)

where T is the absolute temperature and s the entropy per unit mass.

The law of heat conduction is written as

p=-2- ? T (2.1.21)

15



where A is a positive definite second order conductivity tensor.

Note: Local heat production other than due to mechanical energy

dissipation will not be taken into account.

Combination of (2.1.19), (2.1.20) and (2.1.21) yields the inequality

? T e« A e ? T2 o (2.1.22)

M-

c:D-p (6 - Ts) +

For forming processes that will be regarded, the internal energy can
sufficiéntly accurate be approximated as a function of the temperature,
provided that no phase changes occur. This function can be determined
from (2.1.19) considering the case that the first term vanishes (no

mechanical work). The rate of change of the internal energy is then
e=c(m T (2.1.23)

where c(T) is the specific heat which may be dependent of the temperature.

Hence the internal energy can be denoted as

e=e(T) = [ c(t)dt +r (2.1.24)
For solids and liquids the specific heat is determined by evaluating
(2.1.19) in a stress-free state. For gases a stress free state does

not exist and hence the specific heat is determined while suppressing

expansion (CV: c ).

16



IT. CONSTITUTIVE EQUATIONS.

3.1. Thermodynamic constraints with respect to extension of small strain

theory to large deformations.

A hypothesis that is commonly accepted in large plastic deformation
theories is that, under isothermal conditions, the rate of deformation

tensor can be subdivided into an elastic and a plastic part

D = D° + DP (3.1.1)

The relation between the stress and the rate of deformation is generally

assumed to be of the form [14, 26, 34, 38, 39, 44, 49].

D° (3.1.2)

>

Qe
-

_9.g,+0,.9:

>

where o is the Kirchhoff stress tensor [16], which is related to the
Cauchy stress tensor o by

o = o (3.1.3)

%
e
The factor 59 is the ratio of the reference density and the current
density respectively and is introduced in order to satisfy the symmetry
requirements formulated by Hill [17] in 1958.

For metals the difference between o and o 1is generally neglected

because density changes are very small.

The left hand side of (3.1.2) is known as the corotational Jaumann rate:

v

[0 =

1Qe

—Qeoc +o0Q (3.1.4)

The fourth order tensor L depends on material parameters. For isotropic
material L is commonly chosen equal to the linear elasticity tensor

according to the law of Hooke.

G) I1 (3.1.5)

ne

=2GH + (Cb -

WIN

where G and Cb are the shear modulus and the bulk modulus respectively,

which can also be expressed in Young’s modulus E and Poisson’s ratio v

17



_ E _ E
G = 2 (1+v) Cb -3 (1-2v) (3.1.6)

Purely elastic deformation (Qp = o) will be considered as a reversible
process and (3.1.2) will therefore result into a deformation path
independent stress—-strain relation.

However, with % according to (3.1.5), this condition is not satisfied as

shown by the following example.

Consider a two dimensional deformation problem of combined compressing
and shearing. The displacements are referred to a Cartesian coordinate
system. The displacement components are expressed as linear functions

from the (X,Y) coordinates of the undeformed state
u =A (t) Y , u = A (t) Y (3.1.7)
X X y y

The coordinates of the undeformed state can be expressed in the current

state (x,y)
AX y
X:X_71+A y R Y:]_+A (3.1.8)
y y

The components of the velocity v are

i A,
Ve S Ten Y , Vy = Tin Y (3.1.9)
y y

The components of the rate of deformation tensor and the spintensor

are
6VX 6Vy Ay
DXX T~ Toax 0 ’ Dyy - ay - 1+Ay ’
L e L e (3.1.10)
av = A — A
D _1_x 2 X q = 2 'x
X 2 4 1+A ’ X 1+A
Yy Yy v Yy v

For the sake of convenience we assume that v (Poisson’s ratio) vanishes in

this case. The stress-strain relation (3.1.2) then reduces to

> =2GD (3.1.11)

With (3.1.10) we find that the components of ¢’ satisfy the relations

18



X
0 =-1a+2Gb (3.1.12)
y
T=0G+L (0 +0)] a

y X

i A,
where a = 1+Ay and b = 1+Ay (3.1.13)

In the case of pure compression, a vanishes. The only non vanishing stress

rate component is

¢ =2Gb (3.1.14)
y

This equation can directly be integrated by using (3.1.13)

o =2G log (1+A ) + o (3.1.15)
y y yo

In the case of pure shear b vanishes. Besides we assume that a is
constant during shearing.
The solution of (3.1.12) in the case of pure shear, and UX =1 =0 at time

t =1t is
o

0 = -G [cos (alt - t )) - 1]
X o
o = G [cos (a(t -t )) - 1] + o (3.1.16)
N o yo
T = G sin (a(t - to))

We now define two different deformation paths. The first path is given by
shearing followed by compression (la, 1b in fig. 3.1.1)

0<t«<1 : A=At , A =0
X 1 y

1 <t<2 : A=A , A, (t-1) (3.1.17)
X 1 y 2

>
I

The second path consist of compression followed by shearing (2a, 2b

in fig. 3.1.1).

0<t«<1 : A =20 s, A = At

(3.1.18)
1 <t <2 : A

I}
>
2
iR
b

I}
x>

19



initial

shape —

Fig. 3.1.1 Subsequent shearing and compression (la-1b), or subsequent

compression and shearing (2a-2b).

Following the first path we find after shearing (a = AX = A1 , according
(3.1.13)).
o= -G (cos A, - 1)

X 1
o = G (cos A, - 1) (3.1.19)

y 1
T = G sin A1

During subsequent compression only Oy changes according to (3.1.14) and

(3.1.15). Hence the final state after path 1la - 1b is

o = -G (cos A, - 1)
X 1
o = G (cos A, - 1) +2G log (1 + A_)) (3.1.20)
y 1 2
T = G sin A1

20



If we follow the second path we find after compression

o =0

X
oy =2 G log (1 + AZ) (3.1.21)
T =0

During subsequent shearing we find from (3.1.13) and (3.1.18) that

Al
a = 1+A2 (3.1.22)

Hence the final state after path 2a - 2b is

Al
o, = -G (cos 1o -1)
2
Al
oy = G (cos 1+A2 - 1) + 2 G log (1+A2) (3.1.23)
T = G sin Al
1+A2

Comparing (3.1.20) to (3.1.23) shows that the stress state after path

(la - 1b) is different from that after path (2a - 2b) in fig. (3.1.1).
Hence constitutive equations based on (3.1.2) and (3.1.5) cannot represent
finite elastic deformations.

The elastic stress response should be path-independent from a
thermodynamical viewpoint. Equations (3.1.2) and (3.1.5) involve an
extension of the small strain theory to finite rotations, but the elastic
strains are restricted to infinitesimal deformations.

In the case of elastic-plastic deformations the elastic part of the

deformations should be small, the plastic part may be finite.

21



3.2 Kinematic hardening.

The kinematic hardening model is introduced by Prager [41] and Ziegler
[50]. In their theory, which is restricted to small deformations and
rotations, it is assumed that during plastic deformation the yield surface
moves in translation in stress-space. If the initial yield surface is

given by
¢ (0) =0 (3.2.1)

then after a certain amount of plastic deformation the yield surface

satisfies the relation
¢ (0 —a) =0 (3.2.2)

The tensor « represents the total translation and may be regarded as an
internal stress tensor.

Prager assumed that the rate of « is in the direction of the normal on
¢ Ziegler modified the model by assuming that the rate of

a is in the direction of s - « (where s is the deviatoric stress).

If the initial yield surface satisfies the Von Mises criterion, then
Prager’s and Ziegler’s rules coincide. In this section the theory

will be restricted to that case. After a certain amount of plastic

deformation the yield surface is given by

e

6=20l -0 (3.2.3)
p v

where ol = [ g (s —a) : (s - g)]l/z (3.2.4)

The shift tensor « satisfies the condition tr « = 0 .

For small deformation the rate of change of « is given by

. , i

« =3 (s - «) =h DP (3.2.5)

v

in which h is the hardening modulus, related to the slope of an uniaxial
stress—-strain curve. Usually h is assumed to be constant, but it may

be a function of the deformation history and the stress state.
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For large deformation and rotation equation (3.2.5) cannot be applied
because é is not materially objective. If é is replaced by the Jaumann

rate, then the objectivity requirements are satisfied:

hipPil

¥ % (s - «) =h DP (3.2.6)
However, Nagtegaal and De Jong [39, 26] observed that in the case

of simple finite shear, equation (3.2.6) results into an alternating
shear stress prediction. This was considered highly unrealistic. They

proposed a modified translation rule, which can be written as

p _
go2z D2 TR (5.2.7
- 3 o = = h o = T
\4 o
in which o« = (g a: a)’F = (g)l/2 locll (3.2.8)

and h is regarded as a function of «, which is vanishing for large values

of ¢« , h = h(a = o0)e
o

Simulation of large plastic shear with the modified shift rule showed,
that the oscillating shear stress disappeared [39, 26]. However, that
result can be attributed to the rapidly decreasing parameter h. If h would
not vanish very rapidly, it is obvious that the shear stress will still
show oscillations as in the limiting case of h being constant and equal to
ho’ eqn. (3.2.7) reduces to (3.2.6).Hence it can be expected that

for materials which show a non vanishing hardening modulus, the modified
shift rule will not result into satisfactory stress predictions.

With respect to the kinematic hardening model Besseling [7] noticed, that
it can be regarded as a fraction model consisting of one isotropic elastic
ideally plastic fraction, parallel to a (small) purely elastic isotropic
fraction, a Kelvin like model.

In the case of simple shear, the ideally plastic fraction shows a constant
shear stress contribution. Hence the hardening is obtained from the
elastic fraction. Indeed, the differential equations derived by Nagtegaal
and De Jong [39, 26] for the shift tensor of the kinematic hardening model
in the case of simple shear, are identical to equations (3.1.12) for
>elastic’ material (with b = o). The solution (3.1.16) superimposed on a

constant shear stress of the ideal-plastic fraction shows the same
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oscillations as found in [39, 26]. However, in section 3.1 is shown that
(3.1.12) and (3.1.16) are only valid for infinitesimal elastic
deformations. Hence it can be concluded that an improved shift rule can be
derived from a two-fraction (Kelvin) model, provided that the description
for the elastic fraction is thermodynamically valid for finite
deformations.

A simple relation to satisfy this condition is a linear relation between

the Cauchy stress tensor and the Euler-Almansi strain tensor ¢

c =2Ge (3.2.9)

dy » dx in the deformed state and the scalar product of these line

elements dY e dX 1in the undeformed state by
dy « dx — dY « dX = 2 dy * £ * dx (3.2.10)

With (2.1.4) and (2.1.6) it follows that

T 1

(I -A «A") (3.2.11)

N [P

In the constitutive equation of the assembly of two fractions, equation
(3.2.9) must be transformed to a relation between the stress rate and the
rate of deformation tensor De Hence a relation between £ and D must be
established by taking the rate of change of (3.2.10). Using (2.1.9) we
find

dy = % vV e d§ + dz v i . d§ =

. (3.2.12)
2 dy o £ o dx + 2 dy = %V o g e dx +2dy » € o Vé e dx
This relation is valid for any value of dy and dx, hence
é (%V + Vé) = é + %V g + g . Vé (3.2.13)

The right hand side of (3.2.13) is known as the covariant convective rate
(or lower convective rate) [9].
The rate of change of the stress can now be written, using (2.1.11),

(2.1.12), (3.1.4), (3.2.9) and (3.2.13) as

=2GD - Deoc - oD (3.2.14)

The Jaumann rate of the deviatoric stress is then
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=0 -13tro D)’ =

nd

(3.2.15)
2G(D-1/3trDI) -Degc —geD+2D: oI

In the case of small deformations the shift tensor « coincides with the
difference of deviatoric stresses of the two fractions. For large
deformations the shift tensor will slightly deviate from this relation
because the rate of change of the stresses in the fractions are not equal

during elastic unloading and reloading.

Based on equation (3.2.14) we can define a shift rule for a by

% =h [2GDP - DPeg - eDP + 2a : DP I (3.2.16)

where it has been assumed that tr Qp vanishes.

A kinematic hardening model with this shift rule yields approximately the
same stress response as a two fraction (Kelvin) model if the elastic
strain limit of the elastic-plastic fraction is small. In the limiting
case that the elastic-plastic fraction degenerates to a rigid plastic

fraction, both models are identical.

We will now return to the simple shear test. The displacement components

are given by (3.1.7) with Ay =0
u, = AX(t)y =yy , u =0 (3.2.17)

The components of the Euler-Almansi strain tensor are

ou ou ou
e == -1 5H?%- N2 o
X ox 2 0x ox
ou ou ou
__y _1 Xy 2 _ 1 yy 2 _ 1 2
& =5 "3 G > &) 7 (3.2.18)
ou ou du du du du
=1 X 4 y) _1 X _ 1 -1
Xy 2 0Oy ax 2 8y 0Ox 2 8y 0Ox 20

The stress response of the two fraction model with elastic fraction wl and

elastic-plastic fraction (1—w1) in the plastic range is then found by

2
o =0 ’ o =Y Gy (3.2.19)

T =T + wl Gy
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This result is shown by figure 3.2.2., the elastic strain limit is assumed
to be very small. This figure also shows the result of a kinematic harde
ning model with a shift rule according to equation (3.2.5).

It can be concluded that the modified shift rule (3.2.16) does not show
the unrealistic stress oscillations. Moreover, a purely bi-linear shear
stress — shear strain curve is found. However, the magnitude of the stress
component normal to the direction of the displacement, increases rapidly.
This effect can be attributed to the simple linear stress-strain relation
(3.2.9) for the elastic fraction. The model can be improved by replacing
this relation by a more sophisticated one, which involves a hardening
modulus h, which is not constant. Of course, also a non-isotropic
hardening modulus introduces by Nagtegaal and De Jong, represented by the
additional term in (3.2.7), may be taken into account to obtain a better
prediction as regards the Bausschinger effect. Development of more
sophisticated models is beyond the scope of the current research
programme. The objective of this section is, to make reasonable that
extension of the kinematic hardening model to large deformations and
rotations can be obtained by replacing the material rate of change of the
shift tensor by the covariant convective rate instead of the Jaumann rate.
If the Jaumann rate is applied, an extension to large rotation is
obtained, but the model is still restricted to small deformations.

Another modification of the shift rule is proposed by Lee [30]. In his
rule the spintensor is replaced by a modified spintensor, depending on the
total rotation.

This modification is based on the assumption that the gliding mechanism of
the atoms is not continuously rotating according to the spintensor, but is
more or less related to the total rotation tensor (obtained from the polar
decomposition of the deformation tensor A of equation (2.1.5)).

In the simple shear test, the rotation angle has an upperbound of m/2
whereas the time integral of the spintensor increases continuously. By the
modified spintensor this upperbound is taken into account and therefore no
oscillations are predicted.

At this stage there is no reason to decide as to which rule should be
preferred, the rule by Lee or the present rule based on the covariant

convective rate.

26



200 - shear stress

f_’,/"'

e e
e
o -“‘-_\__‘
T
b

100 ~
o
=
1
N
i
-

(] 1 L L I3

0 — 1 2 am

shear strain [‘.l']

—— Modilied shiftrule oblained
froma 2=froction (Kelvin)
- normal stress ;2?::,:;':{::‘: elasticstramn

—===Kinematic hardening
(Nogtegaal et al[39])
and 2 fractionmodelwith
small elastic strain
formulotion

hardening dulus
Gl=9,.G- zgﬁfmmi]

[ 8

stress

G—-

=200 ;

1 1 L1
0 —= 1 o2 3
sheor strain[y]

Fig. 3.2.2 Stress prediction of kinematic hardening models in simple

shear deformation.

27



3.3. Natural reference state theory.

In the foregoing sections isothermal conditions were (implicitly)
assumed. However, in many processes the temperature changes are
considerable and even phase changes may occur in forming processes at
increased temperature. In numerical simulations these non-isothermal
condition must be taken into account because material properties change
when the temperature changes.

A theory in which these non-isothermal effects are taken into account is

the natural reference state theory developed by Besseling [5].

The theory is based on the principle of conservation of mass, the first
and second law of thermodynamics, the concept of a local thermodynamic
state and of a local geometric natural reference state.

As special cases Besseling [5] considered gases, elastic materials, simple
solids, and liquids.

In this theory stress is thermodynamically defined. The theory has been
further worked out for large elastic-plastic deformations [18,7]. However,
a restriction has finally been introduced for small elastic strains.

In this section the theory will be briefly summarized. Besides it will be
shown that rather simple constitutive equations can be obtained without
making restrictions to small elastic strains, hence kinematic hardening

can be taken into account in a way as presented in the previous section.

The natural reference state is related to the current state by a transition
of a line element dx in the current state to it’s local natural reference
state da

da = B » dx (3.3.1)

This transition is invertible. By the polar decomposition theorem, B can

be written as
B=U R (3.3.2)

The tensor U defines a deformation and is symmetric (QT = U)e The tensor
T -1

R defines a rotation and is orthonormal (R =R ")e

The length dlo of a line element in the natural reference state is

defined by
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(dlo)2 = da * da = dx e BT e B e dx (3.3.3)

The tensor g = BT * B is the metric tensor that defines the generally
non-Euclidian metric of the natural reference state.
The metric tensor g is not invariant under rigid rotations and therefore

not a proper geometrical state variable. The tensor

C=B.B (3.3.4)

is invariant under rigid rotations and therefore a proper state variable.
The tensor U is also a proper state variable. From (3.3.2) and (3.3.4)

follows that
C=U-»=»U (3.3.5)
or

U=c"? (3.3.6)

The metric tensor g is obtained by rigid rotation of C

g =R +CeR (3.3.7)

According to Besseling the internal energy e is assumed to be a function

of C and the entropy s per unit mass
e = e(C, s) (3.3.8)

The rate of change of the natural reference state, characterized by (da)”
is due to a local plasticity and creep process and can be expressed in the

rate of change of B and the velocity gradient,

(da)” =P edx=(8+B v o dx (3.3.9)

B=P-B+wW (3.3.10)

C=Pe+B +B+P -2BeDeB (3.3.11)

By introducing the fourth order identity tensor H (see appendix A eqn.

(A 31) etc) we can write (using property (A 34) of appendix A)
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E=B+HB : B'eP+P «B T -2D) (3.3.12)

The material behaviour of a material particle in a homogeneous deformation
process is assumed to be equal to the behaviour in a non-homogeneous
process. Hence it follows with (2.1.22) that the existence of a
temperature gradient is irrelevant with respect to the local material

behaviour, we may regard the homogeneous case in which the inequality
c:D-p (6-TsS) > (3.3.13)

must be satisfied.

Note: The last term in the left hand side of (2.1.22) is positive
definite, hence (2.1.22) is satisfied if (3.3.13) is satisfied.

The material rate of change of the internal energy can be expressed as

3e

3s °© (3.3.14)

Substitution of (3.3.12) and using formula (A 35) of appendix A yields

e= (B = gg «B): BleP+P «B T -2D) « gg s (3.3.15)

Substitution of (3.3.15) into (3.3.13) yields

T de de, e
((I + 20 B e a—g ° B) : D+p (T - g) s +
T ge 1 T T (3.3.16)

— e —— o M [ ._ 2
(pB 52 +B): (B +P+P «B ) > 0

The equal sign corresponds to the case that only elastic deformations

occur currently. Condition (3.3.16) can only be satisfied if

= - T o % o
o = 2p B ac B (3.3.17)
and
T = de (3.3.18)
ds

The energy dissipation due to inelastic deformation must satisfy the

condition

c: BleP+P «B )50 (3.3.19)

N [P
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Because of the symmetry of o this can be written as

o: BleP) >0 (3.3.20)
Equation (3.3.17) defines the stress tensor as a function of the
deformation and entropy differences in the current state and the natural
reference state respectively. If this formula is applied, material
parameters must be given as a function of the entropy. However, material
handbooks usually offer material data as functions of the temperature.
Therefore it is more convenient to express the stress as a function of the
free energy F [8, 42] where the free energy is a function of the tensor C

and the absolute temperature
F=F(, T) =e - Ts (3.3.21)

It can be shown (see appendix B) that

(&

de
( 5@ )s ac T (3.3.22)
and

- (- &
s = ( 3T )g (3.3.23)
Equation (3.3.17) can with (3.3.22) be replaced by

= - T L] @ L]
o= -20 B ac B (3.3.24)

The tensor g_lo P, which appears in the energy dissipation (3.3.20) is

denoted by the rate of plastic deformation tensor D

D' =B .pP (3.3.25)

Motivated by a principle of determinism, Besseling concludes that QP is
symmetric. This is not strictly necessary because a nonvanishing anti-
symmetric part supplies no contribution to the energy dissipation. At this
stage there is no physical evidence to assume that QP is not symmetric.
The rate of change of the transition tensor B can, with (3.3.10) and

(3.3.25) be expressed as

=B+ (@ -D) -B+Q (3.3.26)

| e

The rate of change of the stress tensor can be written as a function
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of the rate of deformation and the temperature rate:

From (3.3.17) we find

. 2
S = E —_ .T [ ] @ [ ] T. @ [ ] B T [ ] E . . [ ]
c=fo-2o B+ L eBrB BB - 50 B~
= = ac
5 B (3.3.27)
T 0 F
*B 5T "B
2 2
where Q—g is a fourth order tensor, Q—g S (QE) (3.3.28)
ag ag oC a8cC

Substitution of (3.3.10), (3.3.12) and (3.3.26), while using the formula’s
(A 34) and (A 35) of appendix A, we find

gvzé—gog+gog:

Co- - D) eoc-0ce (D-D) + (3.3.29)

P T 62F .

+ Lo (D-D) -20B = aCaT - B

where the fourth order tensor L is given by
T T 62F

L=4p (B  «He*B'):—: (B H e B) (3.3.30)
- A Yo

Hitherto section 3.3 has dealt with a continuum theory that is applicable
to gases, liquids and solids. In the next part the theory will be focussed
on solids, including elasticity, plasticity and creep.

An energy dissipation function &€ is introduced for creep

o : QP =& (0, a, p, T)>0 (3.3.31)

The second order tensor « is associated with anisotropy and is materially
objective. This tensor may change due to inelastic deformation (strain

hardening).

Time independent plastic deformation will occur when the stress tensor

reaches the yield surface. This yield surface is defined by

¢p=¢ (c, a, p, T)=0 (3.3.32)
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In metal plasticity the natural reference state is characterized by a
constant mass density. In that case only the deviatoric components of the
stress tensor contribute to the energy dissipation, therefore the rate of
plastic deformation tensor is dual to the deviatoric stress [7]. In soil
mechanics however, the density in the natural reference state is not
constant. Hence dissipation due to density changes must be taken into
account in addition to dissipation as regards distortion. The rate of
plastic deformation can in that case be associated with the gradient of a
potential function in stress space [46]. This (yield) potential y depends

on the same variables as the yield surface
x=x (@, a«,p, T (3.3.33)

When both creep and time-independent plasticity occur, the rate of

plastic deformation must satisfy equation
+ou 2 (3.3.34)
where > 0 if ¢ =0 and ¢ > O
u=0if ¢ <Oor ¢ =o, ¢ <0
In the case of metal plasticity we may assume that
o9 _ Ox
do o (3.3.35)
The factor A is completely determined by the dissipation function E&e

Ao

OJ|OJ
1Q m

_ _ . %8 -1
=€ > A= (0: 5o ) € (3.3.36)

The scalar factor p can be calculated from (3.3.34) on condition that the

stress tensor must satisfy the yield condition (3.3.32); hence

o_6¢‘

¢ 9¢
¢_6g +

6 . o 0P = 095 _
do. a + 30 p+3rT=0 (3.3.37)

.
o

or by introducing the Jaumann rate of o and «

o))
S
g
+
Q_)|Q_)
IR M
1R]
+
Q_)|Q_)
O e
e
+
Q_)|Q_)
=S
—je
+

(3.3.38)
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0T, ,

+[g_§.gT+( oq+?oq‘T+(

The yield function ¢ must be invariant under rigid rotation, hence the
last term in (3.3.38) must vanish identically. This condition is satisfied
if the term between the compound brackets in (3.3.38) yields a symmetric

second order tensor. Because of the symmetry of o this condition is

29 .54 82, + (6¢ Tows
g - o = « -
(3.3.39)
3 . 9% _ . 6¢ T _ T, 09 _
205 %" (G % "5y

Note: The kinematic hardening model satisfies this condition. The

orientation tensor « is symmetric in that case.

With (3.3.39) we can reduce (3.3.38) to

s _0¢ . vV 9.
¢_6gg+69€

1Rd

¢ » , 99 2
+ 30 e+t T= 0 (3.3.40)

We assume that the rate of change of the hardening tensor « may be
subdivided into a part that is proportional to the rate of plastic
deformation and a part that is independent of plastic deformation (for

instance softening due to recristallizing or phase changes). So we can

write
9 ¥V _
da a = ¢1 [T ¢2 (3.3.41)

By substitution of (3.3.29) and (3.3.41) in (3.3.40) we can derive that

2
_ (09 ox _ %€ 9¢ _ 93¢ | T,oF | T
p= G L 0o ag v gy - g2 @esle S e B T
. (3.3.42)
9¢ 9¢ e 9 . x  OX -1
Y T e P et Pt et L g T #)
where
»*
L =L-Heo-o0-H (3.3.43)

Substitution of (3.3.34) with g according to (3.3.42) into (3.3.29) yields

ST
Il
DIOe
1
+
e

oy s m o -a% )
= - do
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- (1-h) Y T+ (1-h) Y i D - (1-h) Yo+ (3.3.44)
2
T &F .
2 p B ¢ agaT ¢ B
where
* Ql Qﬂ *
L doc do L
y = (3.3.45)
2!
h=—"— (3.3.46)
¢, - N
L* . %X 8 99 5, BT i B)]
., = ‘80 8T 8 “P= T oacer =
v = (3.3.47)
*  ox 99 . 9¢
Lo do (60 T dp Pl 1
HH - -
Yy o o= (3.3.48)
* . ox
L do ¢2
HHH -
Y = (3.3.49)
N
with
No=9% . ¢, X (3.3.50)
g = = do

The tensor X** has been determined by using the relation (2.1.17).
In metal plasticity X** must vanish in order to satisfy the desired

symmetry conditions [18].

The constitutive equation represented by (3.3.44) through (3.3.50) may be
applied for materials showing anisotropic strain hardening and time
dependent plastic deformation (viscous creep flow). However the
description is restricted to fixed directions of elastic anisotropic
properties. If these directions change during the process, as will happen
in flow of polymers due to molecular orientation, the free energy function
should be dependent on an orientation tensor similar to the dissipation

function and yield surface.
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3.4. Isotropic materials.

For isotropic materials the free energy, the dissipation and the yield
criterion are functions of the invariants of Ce The invariants of C are

equal to the invariants of the metric tensor g and are given by

C1 =tr C=+trg
C,=trCeC=tr (92) =C:C=g:g (3.4.1)
C3 =det C =det g =g

The free energy can now be expressed as
F = F(Cl’ CZ’ C3, T) (3.4.2)
or F=F(tr C, tr(C = C), g, T) (3.4.3)

In order to establish the constitutive equation we have to determine the

derivatives of the invariants. With equation (A 40) of appendix A we find

9, dtrC

ac ~  aC

=1 (3.4.4)

With equation (A 52) and (A 42)

ac, oC: C
5c - e - 2C (3.4.5)

With equation (A 53)

8C, 8 det C

ac ~  aC

- gct (3.4.6)

The second order derivatives of the invariants are

62C1

— = 9 (3.4.7)
ac

62C2

5 = 2 E (3.4.8)
ac

and with (A 56)
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— =gC " C -gC"«H-eC (3.4.9)

In order to establish expressions for the stress according to (3.3.24)
and the fourth order tensor % according to (3.3.30), we must first work

out expressions containing the derivatives of the invariants.

ac

T 1 T ~

B s5c *B=B +B =g (3.4.10)
ac

B . EEE B =2B «CeB=2g-eg (3.4.11)
ac

BT.B—S.B:gBT.gl.B:gBT.BT.Bl.B:gl (3412)

With these expressions we can write for the stress tensor (3.3.24)

_ . OF oF . 8F
o= -2p [ac1 g + 256; geg* 8 1] (3.4.13)

It is obvious that a rather simple relation between g and o is obtained if

the free energy is independent of the second invariant.
We shall consider this simple material. Besides it is a condition that the
stress tensor vanishes if C =1 and T = TO and that the stress rate is
isotropic and proportional to the temperature rate if C =1 and T # TO. A
free energy function which satisfies these conditions is given by

G 1/3 3Cb 176 F 1/3

e
F=5— (tr C - 3g ) + 0— (6 g7 - (E_)

2pO 2pO o

log g) + @ (T)  (3.4.14)

In this formula is e, the density in a stress—-free state at T = TO, and Pr
is a function of the temperature, representing the density in a stress-
free state at arbitrary temperature. The relation between Pr and the
coefficient of thermal expansion « Iis

= (=) = -a(T) (3.4.15)

The third invariant g is related to the current density pu by
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= (&9 (3.4.16)
£° %

The derivatives of F with respect to the invariants are

F _oF _ G
ac, ~ atrC ~ 2p_
&+ (3.4.17)
ac
2
aF aF < -2/3 % 556 PFas3 -1
aC. " 8g ~ 2p & * 30 (g —(5—) g )
3 o o o

substitution of (3.4.17) in (3.4.13) yields

3C o)
G 1/3 b 1/6 F.1/3
o=2p [5— (g-g 1) + =— (g - (—) ) T 1 (3.4.18)
Zpo - - Zpo p -

The tensor g = é(g1/3l - g) (3.4.19)

vanishes in the case of isotropic deformation and is therefore a measure
for the distortion of a volume element.

In order to establish the constitutive rate equation from the general form
(3.3.44) we must first calculate the second order derivatives of F by

using (3.4.4) to (3.4.9) inclusive, (3.4.14) and (3.4.17).

2 C
aF _ (-1/3 G 1/3 b 1/6) C—l C—l .
6C2 2po 4po - -
= (3.4.21)
1/3 3Cb 176 F.1/3 -1 -1
+ 57~ - 5= (g EHV7 )1 eH.C
s s s
Substitution of (3.4.21) in (3.3.30) yields (see appendix C)
L=2 (c1,3g7%+2c g7 11+
= 2 b - =
o
(3.4.22)
2 1/3 176 F.1/3
+ g6 -3c (g - &)1
s oS
1/2 o) 93
If the volume changes are very small (g = E_ o E_ = 1) , expression
o o

(3.4.22) reduces to expression (3.1.5) obtained from linear elastic
material. The mixed derivative of the free energy with respect to C and T

is of particular interest in non-isothermal processes. With (3.4.14) and
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(3.1.6) we find

2 3C o
6F _1dGoF b 3G dv 16  PFl1/3.0 -1
8C6T ~ G aT ac * zp ** 5 3t (8 (5 ¢ (3.4.23)
= = o o, (1-2v) o

The variation of Poisson’s ratio with respect to the temperature plays a

minor role in large elastic plastic deformation processes, and will be

neglected. With this approximation we can write

T 62F

* BcaT

-2p B e B = dG o - 3e C., oI (3.4.24)
il il dT_

With respect to plastic deformation we shall consider a yield criterion

and dissipation function which are widely used in metal plasticity and

generally referred to as the J -flow theory [16]. The energy dissipation

2
function can be written as

pO
S N (3.4.25)

where o is the equivalent (deviatoric) stress

o=Cs: )" (3.4.26)
with
s=¢--trol (3.4.27)

The tensor s is the deviatoric stress tensor.

The yield surface and yield potential are assumed to be equal and satisfy
the Von Mises yield criterion

s
¢ =x = o o -0, (T, ) (3.4.28)

e
The factor 59 is introduced by V.d. Heijden and Besseling [18] in order
to obtain the desired symmetry in the plasticity relation based on

normality conditions, (the tensor X** in (3.3.44) and (3.3.48) vanishes in

that case).

Noting that — = >— S (3.4.29)
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we can write, according to (3.3.36)

%8 _ (%8 .yl g 08 3 _ 38
A= G 9) €555, 8 s (3.4.30)

Comparing the general form of the yield surface (3.3.32) to (3.4.28) we

can formally write

a=€cl (3.4.31)
and

oo
9 Y-V (3.4.32)
O~ = de

We assume that the hardening parameter € will only change due to time
independent plastic deformation, (¢2 in (3.3.41) vanishes) and satisfies

the relation

©

2 99 . 5¢y1/z © (3.4.33)
8o

o “te
In this relation, € will coincide with the logarithmic (natural) plastic
strain in a uniaxial tensile test, hence it is denoted as the equivalent
plastic strain. With (3.3.41) we find that
p.  Oo

- _ _ o _ v
¢1 = P 36 (3.4.34)
The yield tensor (3.3.45) up to (3.3.50) inclusive can for this isotropic

material be written as

MM
X:—
= NY
b %y
h = p__ 0 (3.4.35)
e do
Y o \
N + — ——
[o) de
M [ po o 4G Bov 1
* - e G 9dT aT
Y = Y
N

40



where M = & 1% % _ e L -2 =)
- p. = 8o e = 20
o = o
1 1
or M = o [(B3G -tro ) I-3s] s
NY = (B2 08 1 F L0 L5 tr o - B tr (seses) (3.4.36)
e do = do - 2 - = =
o - - 20
e
1/3 1/6 F, 1/3
= g’ c+3cC (g7 - )]
o o

¥ HHH
Note that Y as well as Y vanishes.

In the case that the elastic part of the deformations is small,

expressions (3.4.36) reduce to

(3.4.37)

The constitutive rate equation (3.3.44) reduces for this isotropic

material to

gvz -0 tr D + (L* - (1-n)Y) : (D - §§§ s) +
B B 20
(3.4.38)
~ (- *» ,1d6  3p .
+ (- (1-h) Y + car @ o Cb a I) T
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3.5. Fraction (or overlay) model.

In the fraction model each volume element is thought to be subdivided in
a finite number of subelements or fractions. The fractions have mutually
different properties but are isotropic. The fractions are all subjected
to equal macroscopic deformations.

The fraction model introduced by Besseling [4], was at that time
formulated for small deformations and rotations. The theory has been
extended to large inelastic deformations and rotations, but restricted to
small elastic strains within each fraction in [7, 18].

As has been shown in section 3.2, it is necessary to take into account at
least one fraction which is subjected to large elastic deformations, in
order to obtain a proper prediction of kinematic hardening. Therefore in
the present formulation no restrictions are assumed as regards the

elastic strains.

In the fraction model the stress tensor is obtained from a weighed sum of

the fraction stress tensors
N
o= ) ¥ o (3.5.1)

where N is the number of fractions and wk the weight factors or volume

fractions.

N
-y ¢ (3.5.3)

where the Jaumann rate g k of each fraction satisfies the (isotropic)

equation (3.4.38)
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k
ko HKirpe W a0 Y - =X K.
ol © -t = = = k.2 =
2 (o)
(3.5.4)
. %k _1dG k . 3p .
Pl Y e g He 18 g et

The elastic properties, represented by G and Gb

assumed to be equal for all fractions, and hence the elastic tensor %

and the mass density are

(3.4.22) is the same for each fraction. However, the tensor %*will be
different for each fraction because equation (3.3.43) must be evaluated
at fraction level, hence fraction stresses must be substituted.

For small elastic strains the difference between L and E* may be

neglected.

The main advantage of the fraction model is that it describes anisotropic
strain hardening such as the Bausschinger effect, primary and secondary
creep and creep recovery, whereas the formulation is based on rather

simple isotropic material properties on fraction level.

The fraction model has been verified by biaxial plastic deformation tests

on tubular specimens, reported in [25].
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3.6. Phase changes.

When phase changes occur, the material can be thought to be subdivided
into a number of mass fractions (Ck), which values change due to phase
transformations. For each single phase the internal energy is assumed to

be a function of the temperature according to (2.1.24).

ko oK LI a8 (3.6.1)

o]

The total internal energy is the weighed sum of the fractions

N k
e= ) e (T)C (3.6.2)

e c (3.6.3)

where pk is the density referred to, when the material exists in phase k

only (p = pk if wk: 1 and CkZ 1) Both wk and Ck satisfy the condition

(3.6.4)
The mass density can be expressed as a weighed sum using (3.6.3) and

vy e (3.6.5)

In a reversible process, the mass fractions can be expressed as a function
of state variables. In liquid-gas transformations the mass fractions are

usually regarded as a function of the temperature and the entropy.

If transformations occur within a temperature range in solids, the mass
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fractions can be expressed as a function of the temperature. These
functions can be determined from a transformation test in a stress—-free
state. Consequently the internal energy is also a function of the
temperature only. Phase changes are then implicitly taken into account
by (a modification of) the specific heat. In the limited case that
transformations occur at a constant temperature the mass fraction should
be expressed as a function of the entropy. In numerical procedures
however it is advantageous to approximate the latter case by a small
temperature range in which the transformations occur with a large

(finite) specific heat.

With these approximations, reversible phase changes can be taken into
account within the formulation given in the previous sections. Phase
dependent mechanical properties must be taken into account by appropriate

temperature—-dependent values.

When phase changes occur irreversibly, the mass fraction can not be
expressed as a function of state variables. Irreversible phase changes
occur in fast cooling processes, like quenching of steel. In this kind of
processes, a phase that in an equilibrium state only exists beyond a
particular temperature, remains present at a lower temperature. This
phenomenon can mathematically be taken into account by introducing an

upperbound for the rate of change of phase transformations

k
dg k
s k e o . dC e k
= —= <
C aT T if I oT T I c crit n,
(3.6.6)
s k s k deo s k
C =2¢C crit if I T TH>1nunc crit”
or if T is out of the equilibrium range,

k k . . . S ] aes
where Ce = Ce (T) is the mass fractions in an equilibrium state at
temperature T. The critical rates of phase changes éirit are assumed to be

a function of the state variables [23, 45, 47].
The rate of change of the internal energy can be expressed, using (3.6.1),

(3.6.2) and (3.6.6) as
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N N
=y Fmcks 3 Kmiek
k=1 k=1
or
. xs XN T k K, sk
e=c T+ ) [.[ c (x)dr+r1C (3.6.7)
T
k=1 o
where
N
H =y KoK (3.6.8)
k=1

The density changes due to phase transformation may, in a non-homogeneous
process, result into internal stresses and inelastic deformations. (In a
steel quenching process the density of the martensite phase is about 3%
lower than the density of the austenite phase).

Residual stresses that remain in a product after the transformation may
lead to damage (internal micro cracks) which in turn results in reduction
of life time of the product or even disapproval. Hence density changes are
of considerable interest. In the mathematical model we can take this into
account by an extension of the description of thermal

expansion by considering the density in a stress—-free state P similar to
the description given in section (3.4).According (3.6.5) we find for the

stress—-free state

N
o = Y ¥F oS(m) (3.6.9)
F k=1 F

The rate of change of the density is then

e N pk N pk
2h=31 ¥t ey L (3.6.10)
e k=1 e k=1 o

The first term in the right hand side of (3.6.10) represents thermal
expansion and the second term expansion due to phase changes. According

(3.4.15) we can write

k
e e

9 (Ey o 5(E)?/3k (3.6.11)
oT po o

The rate of change of the volume fraction can be expressed in the rate of
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change of the mass fractions using (3.6.3) for the stress-free case

P
<=4 (3.6.12)
fr
Hence
[ ] p [ ] p [ ]
b= EF e " S (3.6.13)
fr fr

In the second term of the right hand side of (3.6.13) the factor with the
quotient of Pr and p? should be eliminated using (3.6.10) and (3.6.11). In
solids and liquids however, this quotient can be assumed to be
approximately equal to 1 and consequently the second term in the right

hand side of (3.6.13) can be neglected. Hence

k

bt

(3.6.14)

(In an analysis of the steel quenching process, the difference between &k

and Ek has a maximum of 3%).

In the case of a full transformation from one single phase to another, wk
and Ck coincide at the start as well as at the end of the transformation,
hence the accumulated error due to the approximation (3.6.14) is smaller

then the relative difference between the density of phases respectively.

In the case of an isotropic material model, the density changes due to
phase changes can be taken into account by replacing the factor « T in

(3.4.38) by

P o o .
L RN S I B G W A ol (3.6.15)
dt e e
(0] (0] (0]
or with (3.6.10)
¢ ¢ N pk
- H% (Y3 =t -3 (5H23 y B gk (3.6.16)
po po k=1 po

where o =

Not only the density is dependent on the (change of the) phases, also the
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mechanical properties change due to transformations.

This means that

material parameters, yield surface and dissipation must be regarded as

functions of the fractions. However,

an average yield stress as a weighed

sum of the yleld stresses of the fractions is expected to be unrealistic,

yielding will occur if the yield stress of the weakest fraction is reached

whereas the other fractions are not yet yielding. Hence it is to be

expected that a description based on (an extension of) the fraction model

may result into reasonable predictions for the material behaviour.

extended model,

fractions of the phases.

In this

the fractions are directly coupled with the volume

This extension involves that all phases are

assumed to be subjected to equal deformations, which may be a rather crude

assumption.
The stress tensor in this extended model is
the fractional stresses (3.5.1) whereas the

extended to

The Jaumann rate of the fractional stresses

except that the thermal expansion term oT

In the description of the hardening it should be

softening occurs due to transformations,
will vanish after it is transformed. We can
by a hardening parameter Hk for each phase.

to

i = ok L gkogk i 9 >0
k k
4 and Yy > 0
ix = oK if <o

because

given by the weighed sum of

rate equation (3.5.3) must be

(3.6.17)

satisfy equation (3.5.4)
is replaced by (3.6.16).
taken into account that
hardening in one phase
take this effect into account

This parameter increases due

plastic deformation and decreases if a phase is growing.

(3.6.18)

The yield surface for each fraction according to (3.4.28) is:

©

_ .o k k
¢ = g o,

) (T, H)
e

(3.6.19)

Equation (3.6.17) implies that the parameter ¢, in (3.3.41) does not

vanish
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oo k

9, = - — H ook ¢ 9% >0
o 4 and wk >0

(3.6.20)

and in the constitutive equation also the tensor X*** (3.3.49) must be

taken into account.

The extended fraction model was applied for the purpose of making an

analysis of a steel quenching process of a cylindrical bar.

are discussed in chapter 5.

The results
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IV Finite element formulation.

4.1. Virtual power and virtual heat.

The finite element method can be regarded as a numerical method for
solving differential equations approximately.

The basic (differential) equations describing a thermo-mechanical
deformation process are given in chapters 2 and 3. A number of unknown
field variables (rate of deformation, spin, heat flux) can easily be
expressed in other field variables (velocity, temperature) and therefore
be eliminated in the solution procedure. This implies that the equations
by which field variables are eliminated, are satisfied exactly, whereas
the remaining equations are only satisfied approximately.

A commonly applied procedure in finite element analysis of mechanical
problems is solving the equilibrium equations approximately, whereas
constitutive equations and compatibility equations are exactly satisfied.
This procedure will be adapted here too with respect to both, mechanical

and thermal equilibrium equations, (2.1.18) and (2.1.19) respectively.

Firstly we shall consider mechanical equilibrium (or conservation of
momentum). The mechanical equilibrium equation can be written in the weak

formulation

W= [&ve (o v o+ pf) dV = o for any 8 v (4.1.1)
v ~ ~ - ~

Where V is the current volume of the body. The inertia terms are not

explicitly taken into account in (4.1.1) but may be regarded as a part

of the body force fe

By applying the divergence theorem, we can write

W= [ (% Sv:o-8vepf)dV - [ &vetds=o0 forany s v (4.1.2)

v - v 7T i
Equation (4.1.2) is known as the virtual power equation. The introduced
independent field vector 8v is denoted as the virtual velocity. The vec-
tor t represents the surface traction per unit outer surface and is

related to the stress tensor and the unit normal vector n by
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t =0 en (4.1.3)

The stress tensor cannot directly be eliminated from (4.1.2) (as against a
linear elastic problem) because the constitutive equations (3.3.44) and
(3.4.38) yield an explicit expression for the stress rate, not for the
total stress.

We can obtain a weak formulation of the equilibrium equation containing
the stress rate by considering the material rate of change of (4.1.2) and
require that the resulting expression vanishes for any (time dependent)

virtual velocity field. By applying formula (2.1.16) we find

SW = I [(? éy). ;oo + ? dv : é - 6% e pf —8v e (pf). +
+ (Vv :ag-ovepf)Vevlav+ (4.1.4)

- I[é& et + Vet o+ (8v e t) %s. VS] dS = o for any 8 v

5 ~ < ~ < ~ ~7 ~ ~

The term %s. v is the divergence of the surface component of the velocity
in the two-dimensional (curved) subspace s and denotes the rate of change
of a unit surface area. The material rate of change of the gradient of the

virtual velocity can be written as

aov
Gon'=Frhovrvl o=V (5eveFon-dTv-don
or Vo) =V ov -Vvelsy (4.1.5)

By substitution of (4.1.5) into (4.1.4) and separating the terms

containing év and sv respectively, we find

W= [ Mov:o-RveUsv):o+¥v:olVevlav+
S on vy * VoV Vv

+

- f [Sv e (pf). dv e pf ?-Y] dv +

\

[ (v el +ovetV¥ ov)ds+
~ ~ ~ ~ ~8 ~S
S
+ [ 6% : o - 8v e pf) dV - [ov « t dS = o for any & v (4.1.6)
v oo S s ~ 7 -

Because of equation (4.1.2) all terms containing 8v (the last two
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integrals) vanish.

The stress rate can now be eliminated by means of the constitutive

equation. We can formally write the constitutive equations as

v
o =

o+l D + LIT - o (4.1.7)

VIO
e

The tensors EY and Eq are found by substituting the appropriate terms of
either (3.3.44), (3.4.38), (3.5.3), (3.5.4) or (3.6.17) depending on the
type of the analysis. The tensor @d represents dissipation due to creep
and terms related to irreversible phase transformation depending on the
state variables.

Substitution of (4.1.7) in (4.1.6) using (3.1.4), we find

sw= [ [? v i o g + ? v Y.p 4 ? 8v : (Qe0 - oeQ) +

+ ¥ 8y qu - Y oev: oed - (§Y . ? dv) : o + ? v :0o ? evl dv +  (4.1.8)

- [ (8v pf)dV - ] (8v . P rovett ov )dS = o for any &v
\ - - S - - - v s s -

The first and last term in the first integral cancel due to equation

(2.1.17). The third and sixth term can be combined

Vov i (Qeo - 0eQ) - Vv ¥ BV o=

Sy ¥ eVy .o

= tr [; Sv é . vé s 0 -

|
VN |k

sy vV eo -5yl W ol

(¥ +¥9) c o Voy o W e ol

% Sv e %V e o + L
~ pipe - 2

1
2 ~

tr (-2 (6v ¥ + ¥ av)

= 2 (8DeD) o0+ (Wovevw:o (4.1.9)

Here 4D is the virtual rate of deformation tensor

Y i ? Y (4.1.10)

I
N =

With (4.1.9) we can write (4.1.8) as
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sW= [IoD: LY :D-20BD+D): o+ (U v« v¥) : ol av +

v

+ [ D : L9av - [ e ehav - [ (psv e £) av + (4.1.11)
\ \ \ -7

- f (v o © + v = t %s . VS) dS = o for any 6 v

S

Note that the first integral is symmetric with respect to 6Y and v provi-
ding that EY obeys an associated flow rule. Hence it will yield a sym-

metrical finite element matrix. However, the surface tractions may lead to
a non symmetric contribution if the surface part with non vanishing trac-

tions changes considerably (second term in the last integral of 4.1.11).

In order to calculate the temperature changes, the thermal equilibrium
equation (2.1.19), (conservation of energy) is also written in a weak

formulation
8= [ (6T (¢ : D+pe-Ve(@AeVDI dV=0 foranys?  (4.1.12)
v v v

By the divergence theorem, we can write

8= [ It (o : D+ pd) + Vot e n o U1l av+

+ [T ¢endS=o0 forany s T (4.1.13)

The rate of change of the internal energy can, according to (3.6.7),

formally be written as
e L e
e =cT + ¢ (4.1.14)

where ¢e represents the second term in (3.6.7) and vanishes if no phase
changes occur.

Particularly in cold forming processes, temperature changes are mainly due
to plastic deformation work and friction. Hence the thermal problem cannot
be solved independently from the mechanical problem. They have to be
solved simultaneously. We can combine (4.1.11) and 4.1.13) in one
functional that must vanish for all (kinematically admissible) virtual

velocity fields and virtual rate of temperature fields

P = oW + 8Q = 0 for any ov, sT (4.1.15)
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4.2. Finite element discretization.

If we assume that at a particular time t all state variables are known,
then we can calculate (approximately) the velocity and temperature rate at
that time from (4.1.15). We will use the commonly applied (isoparametric)

finite element discretization [51].

In each element the velocity and temperature are approximated by

interpolation between (unknown) nodal point values.

v = z WN VN
oL M
T =) NN
N
(4.2.1)

Sv =) N s

oL M
st = ¥ N stV

N

Isoparametric elements are used. The interpolation functions WN depend on
local natural coordinates and are therefore time independent. The tem-

perature rate can then be expressed in the nodal point temperature rates

=y W (4.2.2)
N

The gradients of the velocity and temperature are respectively

% v = z % WN VN

~ N - ~

YT = Y ARG (4.2.3)

~ N -

The rate of deformation tensor can be expressed as

D =) EN . (4.2.4)
N ~

N . . . % N
where B is a third order tensor depending on v
B=tmwd ek &' (4.2.5)

Note: The Cartesian components of BNNare
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BWN

(s BWN v
ik ox,
J

1
ijk 2 Jk ox, *

For the virtual velocity and virtual temperature rate,

to (4.2.3) and (4.2.4) hold

] (4.2.6)

relations similar

¥ v = Y AN
ST A v
(4.2.7)
¥ ot = Y v N st
v L -
D=YBY e =Y & o gV (4.2.8)
N " N T -
where BN =1 Ve V) (4.2.9)
Substitution of (4.2.1) up to (4.2.8) inclusive in the expression for
SW (4.1.11) yields
W=y {&v « KN 4 _SMN] e e
M,N 7 "
(4.2.10)
£y MMy s M.
M, N " M7 -
where
KN = T ™ @ - Heo - oem BN v
v = = 2 2 £
(4.2.11)
s T Moo d) 1 av
v v v
KN - I ey o as (4.2.12)
-S ~S
S
MN - g™ LT gy (4.2.13)
X v =
and
Moo M Mo ave M as (4.2.14)
t yE t < ¢

For &Q (4.1.13) we find
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Q=Y (-stMgN o N, stMpM Ny,

M, N
(4.2.15)
o Y AN Ny Ly ™M g
M, N M
where
QN = | oM o : gN dv (4.2.16)
2 v £
pN — I o pc N av (4.2.17)
'
AN =Ty M. A e v N av (4.2.18)
v - Y
#l= [Mgendas+ [ Mg av (4.2.19)
S - \

We now require that both SW and éé vanish for all nodal virtual velocities
and virtual temperature rates that are ’kinematically admissible’. In a

matrix form this can be written as

Yoo oavE, stth | M g Ny
M, N - - -
_QMN PN N
ENCINE L T 0 o | 4
- - - (4.2.20)
5 JMN N
[évb:I , STM] M } M .M
- NM | =o0 for any v, &T
v

We can regard all nodal degrees of freedom as an ordered collection
representing a multidimensional vector [ﬁ]- This vector contains four
components per node, three velocity components and the temperature rate.
The subvector with all velocity components will be denoted as [V]

and the subvector with all temperature rates as [%]

T =1 %, Mt =1 {viN} Ny (4.2.21)

The requirement that (4.2.20) vanishes for all values of BVM and BTM
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results in a set of linear algebraic equations for the components of [G]

which is formally written as

[ K] [R] 11 [v] | [ [£] |
| - | 8.2.22
I_ [-Q] [P] J I_ [T] J I_ - [Al [TI - [¢] J

It is obvious that the matrix is nonsymmetric. By using the Crout
factorization the matrix can be written as the product of an upper
triangular matrix with unit diagonal and a lower triangular matrix. The
triangular decomposition allows the set of equations to be solved in two
steps, the ”forward elimination” and the ”back substitution” [48].

The nonsymmetric matrix has a symmetric structure. Therefore it is
possible to reduce the required storage and computational effort by
storing only the components of the matrix within a local bandwidth. This
was noted for symmetrical matrices by Zienkiewicz [51] and Bathe and

Wilson [10]. The local bandwidth remains unchanged after factorization.
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4. 3. Incremental formulation.

4.3.1. Solution procedure for an increment.

The nodal point velocities and temperature rates can be solved from
(4.2.22). We are however not only interested in the current velocity but
in the (history of the) process. Therefore an incremental procedure will

be used.

During a time increment At the velocity and temperature rate are
approximated as being constant. The displacement increment and temperature

increment are then given by respectively

Au = v At
- (4.3.1)
A
AT = TAt

where ¥ and T are the average velocity and temperature rate during the
time increment.
The equations from which the increments have to be solved are, according

to (4.2.22), given by

[Af]

1
I
R R R | (4.3.2)
[AAt] [T] - [¢ At] |

The circumflex indicates that average values are taken during the time
increment. These average values are not known yet. A first approximation

is found by the known state at the start of an increment. The increments

of displacement and temperature are predicted by the solution of

1

[Af] | (4.3.3)
I
1]

[-Q°1 [P°] + é[AOAt] ~A°at1 [T°1-1¢°At

From the solved nodal increments the average deformation and temperature

rates in the integration points are calculated using (4.2.2) and (4.2.4)

~ A
D= (VB « Au") L and TEgdath L (4.3.4)
= N ~ ~ At N At
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The stresses are calculated by numerical integration of the constitutive
equation (4.1.7) while assuming that during the increment the rate of
deformation and temperature rate are constant and equal to the average

values given by (4.3.4)

L. t+At . tHat . t+At A
o0 = - (] odt)I:D+ (] L'dt): D+ ([ L3at) T+
t t - t
tHAt . t+At t+At .
- f odt +Q e ([ odt) - (] odt) eQ (4.3.5)
t t t

In the case of simple constitutive equations based on J_ —-flow-theory

2
(3.4.38) and without either time depend deformation or phase changes, the
"mean normal” method [53, 38, 26] has been applied as numerical
integration procedure of (4.3.5). In the mean normal method a fictive

elastic mid-increment (deviatoric) stress is used, defined by

s!=s®+2G6 (D-1/3trD 1) at (4.3.6)
This stress is used in the calculation of the yield tensors (3.4.35) up to
inclusive (3.4.37). The stress after the time increment is approximated by
* o ~Y1 -

. g1 A
o =0° - ¢®trpat + L pat + LI T oat (4.3.7)

Note that g* is the new stress which is implicitly referred to a rotated
frame. The stress tensor referred to a fixed global frame is found by

”back rotating” according to the Jaumann rate

ol s @t -5 ) at (4.3.8)
This equation can be regarded as a linearised transformation according to
the Mohr circles. A subincremental technique is applied for other (smooth)
yield surfaces or when time dependent effects are to be taken into
account. The strain and temperature increments are subdivided into a
number of subincrements. The corresponding stress subincrements are
calculated while the stress and temperature are updated after each
subincrement. Equation (4.3.5) is applied for each subincrement whereas
the integrals are approximated by the (updated) value of the integrand
multiplied by the subtime increment.

Due to the approximations in the incremental stress calculation, the final
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stress at the end of the time increment will generally not satisfy the
yield condition (¢ # o) exactly. Therefore the final (deviatoric) stress
components are proportionally scaled down in a way that the yield

condition is satisfied afterward.

From the stresses in the integration points the nodal point (reaction)

forces can be calculated by

Mo M. oav (4.3.9)

?

These nodal point forces are generally not in equilibrium with the
prescribed nodal point forces fM. The residue is denoted as the mechanical

unbalance ratio,
R =——7—7— (4.3.10)

Beside the unbalance RF a discrepancy may arise between the prescribed
accumulated nodal heat flow, the internal energy and the mechanical work
of the nodal point forces. This energy unbalance can be calculated as

follows.
The accumulated nodal heat flow is, according to (4.2.19) given by

t
¢g = [ [Mgenat)as (4.3.11)
. g*r

S
o

The principle of conservation of energy requires that this, according to

(4.1.13) and (4.2.15), is equal to

t
¢$ == J @ [ o:Dat)av+
v t . (4.3.12)
+ [ o pedv+ [ & o J on- ¥ T at) av
\ \ - t, -

There will generally be a discrepancy between ¢M and ¢$ due to the
incremental procedure . The dimensionless energy residue is denoted as the

thermal unbalance ratio
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r ¢g - ¢$ I
R = P (4.3.13)
e
v

The mechanical and thermal unbalance ratio are a measure for the accuracy
of the calculated increment. If they are not sufficiently small, then the
recalculated in an iteration process. The increments after the nth

iteration can be written as

A =™ e
T T 1 T (4.3.14)
AT =AT + AAT
n n .
where AA u and AAT  are found by solving
{ (K] [R] } { [AAu” o1y (4.3.15)

n

]-izlr[f] S
1]

| [-ql (Pl | | (24T | tog1 - 1,01 ]

The stresses, mechanical work, dissipation and nodal reaction are
recalculated with the new increments Agn and AT e

The iteration process stops if the unbalance ratio’s are ”sufficiently
small”. The acceptable unbalance ratio depends on the type of the analysed
problem. The remaining unbalance after stopping the iterations, is taken
into account in the next increment as an additional ”load” increment (load
correction). Hence a relatively large unbalance after an intermediate
increment does not necessarily result into inaccurate predictions in the
final increments. However, a large unbalance ratio may result into a

nonconverging iteration process in the next increment.
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4.3.2. Incremental adaptation of the finite element state, the mixed

Eulerian-Lagrangian formulation.

In the foregoing section the calculation of the new state in a material
point after an increment has been discussed. This new state is only
calculated for a finite number of grid points of the mesh: the nodal
points (for displacement and temperature) and the integration points (for
stresses, strains, internal energy and dissipation). These grid points
correspond to material points; hence the location of these points
(coordinates) change implicitly during an increment. Therefore the nodal
point coordinates must be adapted before the next increment is started.
This procedure of incremental adaptation of the nodal point coordinates
after each step according to the material displacement of the nodal points
is known as the updated Lagrange method. This method is introduced by Mc.
Meeking and Rice [34].

The updated Lagrange method has some disadvantages. Particularly if very
large local deformations occur, the method becomes impracticable because
of numerical problems: elements are too much distorted or even turned
inside out.

In order to be able to continue a simulation, rezoning techniques have
been developed [13]; the simulation is stopped and restarted with a new

mesh.

The problems with respect to the element distortion can be avoided if the
material displacement increments are uncoupled from the grid point
displacement increments. This means that material flows through the
elements. The nodal point displacement increments can be chosen more or
less freely. They are restricted by the condition that nodal points at
free surfaces or at a contact surface of different materials, must remain

on that surface, but not necessarily at the same material particle.

Uncoupling of material and grid point displacement implies that in
addition to the incremental calculation of the previous section,
convection must be taken into account in order to be able to update the
state at the grid points. A method to calculate this convection has been
presented by the author in 1982 [20].

The basic principle of this method is the introduction of additional

continuous stress and strain fields by interpolation of nodal point
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stresses and strains. These nodal point stresses and strains are
determined as average values from all elements that are connected with a
nodal point. The convective terms are calculated as a product of gradients
of these additional continuous fields and the displacement increments.
After this work has been published it appeared that, particularly when
displacement increments are large relative to the element size, the stress
and strain prediction shows oscillations. These oscillations are
increasing with the number of increments until an upperbound of the
amplitude is reached. Investigations have been carried out to avoid these
oscillations and to improve the method. The improved method and the

effects of the improvements will now be discussed.

The value of a material associated quantity o in a grid point with
location x + Ax at the end of an increment and location x at the start
of an increment can be written as

A ~

o (x +Ax, t +At) =0 (x,t) + o At + (Ax - v At) = Vo (4.3.16)
or alternatively
~ A
o (x + Ax, t + At) =0 (x + Ax - v At, t) + o At (4.3.17)

From formula (4.3.17) we see that the new state at grid point X + Ag can
be calculated by the same procedure as in the updated Lagrange method,
provided that the state at grid point X + Ag - % At is known at time t.
The calculation of the state in this point can be carried out after the
velocity (or displacement increment) is known, hence after the iteration

process of the preceding section.
Subtraction of (4.3.17) from (4.3.16) yields
o (x + Ax ~ Au, t) = o (x,t) + (Ax - Au) = Vo (4.3.18)

From this equation we find that, in addition to the updated Lagrange
method, the gradient of the stress has to be determined. This complicates
the solution procedure considerably. If for instance simple 3 node
triangular elements are used then the stress and strain are constant
within an element and the gradients vanish. This implies that convection
of stresses and strains cannot directly be taken into account at element
level. Stresses (or stress rates) are related to the gradient of the

displacement increment, hence the gradient of the stress depends on the

63



second order derivatives of the displacement increment.

This may lead to the conclusion that elements with C, continuity of hybrid

1
elements with continuous stresses are required. However, it will be shown
that CO continuity is sufficient if the convective terms are calculated
from the differences between the values in adjacent elements of each

material associated quantity respectively.

Several procedures have been devised and investigated by means of numer-
ical experiments. All procedures have in common that nodal stresses and
strains are calculated as mean values of all elements that are connected
with a particular nodal point. By interpolation between these nodal point
values we find additional stress and strain fields, these fields will be
denoted as 0* and obey CO continuity.

From these additional fields the convective terms in equation (4.3.18)

can be determined. Equation (4.3.18) will be replaced by
*
o (x + Ax - Au, t) = o (x,t) + (Ax - Au) « Vo (4.3.19)

It is however also reasonable to calculate the values in the grid
points (i.e. integration points) with coordinates x + Ax - Au directly by

substituting these coordinates directly in the interpolation functions;

>
0 (x + Ax — Au, t) =0 (x + Ax — Au, t) =

(4.3.20)
=Y N () N x + ax - 2w
2 X + Ax — Au

Both procedures will yield different results. If for instance Ag = AE
(updated Lagrange), the grid point values remain unchanged when (4.3.19)

is used. The corresponding stress field is discontinuous at element
boundaries.

If (4.3.20) is applied, then grid point values may change even if Ag = AE .
The new field is continuous (and generally rather smooth, depending on the
element type). However, this field will generally not satisfy nodal point

equilibrium exactly.
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4.3.2.1. Local and global smoothing.

In order to investigate the description of convection, a numerical

experiment has been devised in which the convection problem is reduced to
a one—-dimensional case of material flow through a number of spatial fixed
elements. We started with 20 isoparametric axial-symmetric elements with

4 nodes as shown in fig. 4.1.

Fig. 4.1 Element mesh for convection tests.

In the numerical experiment the element mesh is non-homogeneously
prestrained and after that the material is translated without additional
straining. During the translation the elements are spatially fixed. At
the left hand side material enters in the mesh and at the right hand side
material leaves the mesh.

The prestraining has been performed in two steps. In the first step all
longitudinal nodal point displacement components are non-homogeneously
prescribed. Points within a cross-section (equal coordinates y) are

sub jected to equal displacements. The longitudinal distribution of the
prescribed displacement component is shown in fig. 4.2 and the distorted
element mesh is shown in fig. 4.3. A large scale-factor has been applied
in order to visualize the distortion.

The distribution of the axial strain component is shown in fig. 4.4 a.
After determining average nodal point strains, a continuous approximation
is found shown by the dotted line in this figure.

In order to obtain inelastic deformations, the yield stress has been
chosen very low. Isotropic properties have been assumed, material
properties are given in table 4.1.

The resulting equivalent plastic strain field based on average nodal

point values is given in fig. 4.4 b.

Note: No iterations have been performed, hence the deformations are cal-
culated on the basis of an initially elastic state. Because of the elastic
volumetric deformation the deviatoric strain level, and consequently the

equivalent plastic strain, is lower than the axial strain component.
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Fig. 4.2 Prescribed longitudinal displacement field for prestraining

of convection tests.

Fig. 4.3 Deformed mesh after prestraining (displacement scale factor

is 100).
2
Youngs modulus 100000 N/mm
Poisson’s ratio .3
. 2
Yield stress 10 N/mm
(no hardening)

Table 4.1 Material properties for convection simulations.
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Fig. 4.4b Equivalent plastic strain distribution after prestraining.
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In the second step the nodal point displacements are freed. Stresses are
relaxed, but the plastic strains remain unchanged. Material properties
and prescribed displacements have been chosen in a way that geometrical
changes could be neglected during these load and unload steps. The
transverse nodal displacements have not been suppressed. The calculated
transverse displacement distribution at the outer surface of the rod can
be observed from the distorted mesh plot of fig. 4.3. It is obvious that
the transverse displacement field has the same shape as the (smoothed)
strain field. Due to the free transverse displacements the strains are
not exactly uniform in a cross-section. The deviations are however very
small. The shown strain distribution of fig. 4.4 is that at the

centerline.

In the next steps all nodal point displacement increments are free,
except for the points in the right hand cross—-section.

The material displacement increments in this cross—section have been
prescribed in longitudinal direction. In this way a translation without
any additional deformation is prescribed. The nodal point coordinates are
spatially fixed (Ag = o), the material moves through the elements. During

this translation the material rate of change of the plastic strain

vanishes
de _
it - o) (4.3.21)

Hence the spatial distribution of the strain satisfies the one-

dimensional wave equation

de de _

BeiviEL, (4.3.22)
or

e (x, t + At) = € (x - Au, t) (4.3.23)

The first numerical experiment was carried out using eqn. (4.3.19). The
prescribed displacement increments are 0.125 mm. Within an element the
nodal point strains are calculated from the Gaussian integration point
values by extrapolation to the nodes and after that the average value

from all elements connected with a particular node are taken.
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Fig. 4.5 shows the predicted strain distribution after 12 steps and after

24 steps. The results show rather large deviations from the initial

distribution.
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Fig. 4.5 Predicted strain propagation based on nodal point values

calculated by extrapolation of integration point values.

Increasing oscillations are observed in that part of the rod where the

strains should vanish (down stream). The algorithm obviously leads to

instable predictions.

The next experiment was carried out by first calculating a mean (constant)
strain within each element. After that nodal point values are calculated
as an average value of all elements connected to a node. The procedure
based on mean element values will be denoted as ’local smoothing’. Fig.
4.6.a. shows the results of this second numerical experiment. The
predicted strain propagation deviates less from the exact solution than in

the first experiment, but is not yet very accurate. Less overshoot and

smaller oscillations can be observed.
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Fig. 4.6a Predicted strain propagation based on nodal point values

calculated from mean element values (local smoothing)
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Fig. 4.6b Predicted strain propagation based on local smoothing with

reduced increment size and mesh refinement.
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Calculations based on local smoothing were repeated with decreasing pres—
cribed displacement increments and also with a larger number of elements.
Results are shown in fig. 4.6.b. It can be observed that overshoot and

oscillations very slowly decrease with decreasing displacement increments

(and increasing number of increments).

The next two experiments were carried out using equation (4.3.20). We will
denote the procedure based on this equation as ’global smoothing’. In one
experiment, extrapolation at element level was applied and in the other
local smoothing. By the combination of extrapolation and global smoothing,
nearly the same results were predicted as in the case without smoothing
(shown in fig. 4.5), and are therefore not shown again.

The prediction based on simultaneous local and global smoothing are shown
in fig. 4.7. Neither overshoot nor oscillations are predicted, but
apparent diffusion of strain occurs. This apparent diffusion is obviously
a numerical effect of a combination of local and global smoothing. We will

denote this effect as ’numerical diffusion’.
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Fig. 4.7 Predicted strain propagation based on both local smoothing

and global smoothing of integration point values.

71



Additional computations with various number of elements were carried out
in order to investigate the effect of the finite element discretization on
the phenomenon of numerical diffusion. Results are given by fig. 4.8 for

10 elements, 20 elements, 40 elements and 60 elements respectively.

It is shown that the amount of diffusion decreases rapidly, when increas—
ing the number of elements. It appears that the amount of diffusion is
proportional to the difference between the slopes of the curves in two
adjacent elements prior to an increment. The difference between these
slopes may be regarded as a measure for the second order derivative. Hence
from this point of view there is a slight relation to the description of
real (physical) diffusion.

When the number of elements is increased, the difference between the
slopes of two adjacent elements is decreasing. Therefore the amount of

numerical diffusion per increment is decreasing as observed from fig. 4.8.
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Fig. 4.8 Predicted strain propagation based on both local and global

smoothing with increasing mesh refinement.
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On the other hand, the total amount of diffusion is proportional to the
number of increments, independent of the material flow. Hence if many
steps are required to carry out a simulation of a forming process (due to
highly nonlinear constitutive equations), numerical diffusion will smooth
the results too much. This undesired effect must be avoided.

If we regard the limiting case that the relative displacements vanish
(updated Lagrange), no smoothing is required to avoid either oscillations
or overshoot. On the other hand, if the relative displacement increment is
large (experiments were carried out with increments up to the element
length), global smoothing is necessary to suppress oscillations. Therefore
a welight factor was introduced depending on the relative displacement
increment, which accounts for the amount of global smoothing that

has to be taken into account. This weight factor W has a value between
one and zero. If W, = 1, integration point values are calculated by using
equation (4.3.19), which means no global smoothing. When W decreases the
contribution of equation (4.3.19) decreases whereas the contribution of
equation (4.3.20) increases accordingly with a weight factor (1—ws)'
Consequently pure global smoothing occurs when w, = o

The value of W depends on the displacement Au of the material, relatively
to the (displacement of the) element (i.e. the difference between material
and nodal displacement increment) and the dimension of the element
represented by a length £. We require that no smoothing occurs in the
limiting case when the relative displacement vanishes. Hence if Au = o

then W, = le Firstly we will regard an assumed relation between W and Au

given by
Au Au
= — _ 1 — <
LA 1-8 7 if B 7 1
_ . Au
w, =0 if B 3 1 (4.3.24)

The amount of diffusion (dif) is roughly proportional to the number of

increments n, the square of the length of the elements and to (1—ws)
dif =n* (1-w) =nt’ g5 (4.3.25)
If u is the total (relative) displacement then we can write

Au = = (4.3.26)
n

and hence
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dif =Bnf — =B Lu (4.3.27)

This result implies that the amount of diffusion is independent of the
number of increments in which the relative displacement is subdivided.
This is of course an improvement with respect to the case of pure global
smoothing, but the diffusion will not vanish if the size of the
displacement increments is reduced. Only an increasing number of elements
will decrease the diffusion.

We shall require that the diffusion also vanishes when the displacement

increments are decreasing. This can be accomplished by requiring that

6wS
&1}1“]} o m = 0 (4.3.28)

This condition is satisfied by adopting formula

A
wo=1- BT g>1 (4.3.29)

The amount of diffusion can now be expressed as
dif = n #° (B 7= a7 2T (g w)? (4.3.30)

In order to satisfy the condition that the diffusion vanishes for an
increasing number of increments and increasing number of elements
(decreasing £ ) independently from each other, ¥ should satisfy the

condition that
1 <y<2 (4.3.31)

A reasonable choice seems to be y = 1e5

Various numerical tests were carried out to determine a value for e
Results of these experiments are summarized in fig. 4.9.
From these experiments it has been established that a proper value for

B = 4/3,

w =1 - (% Auy 15 (4.3.32)
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Fig. 4.10 Predicted strain propagation based on weighed global smoothing,
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This line is drawn in fig. 4.9. When a value is chosen beyond this line,
overshoot and oscillations are observed. When a value below this line is

chosen, no oscillations are predicted. Values far below this line resulted

in too much numerical diffusion.

The finite element programme has been adapted to calculate the weight
factor automatically according to (4.3.32) at element level. Fig. 4.10 and
fig. 4.11 show results obtained with this optimum weight factor for
various numbers of elements and displacement increments. The results
presented by fig. 4.10 are obtained from simulations using equal

displacement increments as shown by fig. 4.8 in the case of pure global

smoothing.
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Fig. 4.11 Predicted strain propagation based on weighed global smoothing,

increasing mesh refinement and (proportional with the element

length) decreasing displacement increments.
The improvement due to weighed smoothing is obvious from these two

figures. In the case of 60 elements, both figures show the same curve

because the optimum weight factor is zero for the corresponding ratio of
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displacement increment and element size (0.75). A ratio larger than 0.75
should be avoided. Fig. 4.11 shows that for a smaller value a better
agreement with the ’exact’ solution is obtained. The prediction for 60
elements and 48 steps (relative displacement ratio = 0.375) nearly
coincides with the ’exact’ solution.

In the case of 10 elements the deviations are still rather large, but the
initial shape is already poorly approximated by 10 elements because
insufficient nodal points are available for prescribing the initial
longitudinal displacement field. Hence no accurate prediction can be

expected for 10 elements.

Fig. 4.12 shows result for 40 elements and different numbers of displace-
ment increments (decreasing size of displacement increments). It is
observed that due to the automatic weighed smoothing procedure the
prediction obtained in only 24 steps is much more accurate than the
prediction without global smoothing obtained in 96 steps (see fig. 4.12
and fig. 4.6 b respectively).
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Fig. 4.12 Predicted strain propagation based on weighed global smoothing,

40 elements, various number of increments
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As has been noticed before, global smoothing will generally disturb nodal
point equilibrium, even if the relative displacement of the material (with
respect to the elements) vanishes because integration point values are
replaced by those obtained from the continuous fields. By introducing
weighed global smoothing, this disadvantage vanishes because no global

smoothing occurs if there is no relative displacement of the material.

The preceding discussion has been focussed on (dependent) material
associated quantities stored at integration points of elements. But also
for (independent) material associated quantities stored at nodal points
(displacement, temperature), convection has to be taken into account. This
was carried out in the same way as for integration point values, except
that the natural coordinates of the integration points were replaced by

the natural coordinates of the nodal points at element level.

Note: Within the simulation it is not necessary to calculate the (accumu-
lated) total displacement. However, the total displacement yields an im-
pression as regards the accuracy of the simulation by subtracting the dis-

placement from the current position of the nodal points (see chapter V).

Initially the nodal point associated quantities are continuous at element
boundaries, but their gradients are not. Hence if convection is taken into
account at element level, discontinuous fields are obtained. These fields
are treated in the same way as fields stored at integration points in
order to calculate average nodal point values and, by interpolation, new
continuous fields. A difference with respect to integration point values
is that only these new continuous fields are stored at nodal points. This
actually means that pure global smoothing is taken into account. In order
to avoid numerical diffusion, a weight factor according to (4.3.32) has
been applied with respect to the amount of local smoothing for each

component of the displacement.
Results obtained by this procedure from the previously described numerical

experiments are shown in fig. 4.13 and fig. 4.14. These results are

obtained from the same calculations as those given in fig. 4.11.
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Fig. 4.13 Predicted transverse displacement propagation at the outer
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Fig. 4.14 Predicted longitudinal displacement propagation.
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It is observed that the prediction of the displacement propagation is not

basically different from the strain propagation.

For eight node elements the same kind of procedure was followed in order
to take into account convective terms. However, the local smoothing
procedure was chosen according to the least square smoothing method
proposed by Hinton [22], (also reported by Zienkiewicz [51]).

This least square smoothing method will be explained briefly.

The stress and strain field within an element can be represented by a
completely biquadratic interpolation through the nine integration points.
Extrapolation to the nodal points may result into unrealistic nodal point
values. Hinton proposed a bilinear least square fit of a biquadratic field
within each element. He proved that this bilinear fit can be found by
calculating values at the position of four Gaussian integration points of
a ’reduced integration’ scheme. After that nodal point values are
calculated by bilinear extrapolation from these four integration points to
the eight nodal points.

Nodal point values of stresses and strains calculated by this least square
smoothing procedure were found to be much more realistic than values
obtained by biquadratic extrapolation or by direct calculation at the
nodal points.

Besides local smoothing, also weighed global smoothing has been taken into
account for eight node elements.

The same relation between the weight factor and the relative displacement
ratio has been adopted as in the case of four node elements. Numerical
convection tests similar to the tests for four node elements were carried
out. Results of these tests are shown in fig. 4.15. It is observed from
this figure that the procedure of local and weighed global smoothing
results into satisfactory agreement with the exact solution for eight node

elements too.
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Fig. 4.15 Predicted strain propagation for twenty elements with eight
nodes, with local ’least square’ smoothing and weighed global

smoothing.
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4.3.2.2. Adaptation of nodal point coordinates, moving boundary surfaces.

In problems with free outer surfaces or moving contact surfaces between
different materials (forming material and tool), coordinates of nodal
points that are initially on that surface must be adapted in a way that
they remain on the surface. This is a necessary condition for taking into
account the changing shape of the forming product with correct local
material properties. In the finite element programme, nodal points can be
assigned as being surface points. At least two points are required in the
two-dimensional case, and three in the three-dimensional case, to define a
(part of a) surface. The new coordinates of each surface point are
determined by prescribing a direction in which the nodal point moves (not
the material movement). The intersection of a line in this direction
through the initial position of a nodal surface point, with a spline
through a number of material surface points after the increment, is
designated as the new position of the nodal surface point considered. This
procedure is illustrated in fig. 4.16. It is observed that the new
position of nodal surface points is not exactly on the surface found by
the element boundaries if the material displacement increments are
followed. However, if the new position of the nodal points would have been
chosen on these element boundaries, then a piece of material is lost at
every increment. In the case of using a spline, the amount of material

that is lost is more or less in equilibrium with the added material.

Surface of elements after material
displacement (at time 1+ At)

\ Spline through material
\ surfacepoints

J H f

_ 35'% J U]Il] lost material
2m | e
3 —
f

/& me added material
Tas

.
b

{initial surface of elements (at time t)

Fig. 4.16 Adaption of nodal surface point location.
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The procedure has been verified by a numerical simulation of a longitu-
dinal translation of a rod with a non-uniform cross—-section. The initial
element mesh is shown in fig. 4.17a. Only one element in radial

direction suffices for this test because no material deformations occur.

Internal nodal points (at the centerline) are spatially fixed. The

locations of surface points are changing with the condition that they are

moving in the direction of the (local) normal vector of the surface. The

predicted change of the free surface of the mesh due to rigid translation

of the material is shown in figs. 4.17b to 4.17d inclusive.
From these results it is observed that the predicted shape of the

translating bulge remains unchanged.

Instead of adapting the surface point location in the direction of
the local normal vector of the surface, another direction may be chosen.
If in the example of fig. 4.17 a direction normal to the centerline

was chosen, then the oblique shape of the elements could be prevented.

In an actual simulation of a forming process the size of all elements
will generally not be equal. Therefore a one dimensional convection
simulation was carried out with a finite element mesh containing 26
element of different size. The initial mesh is shown in fig. 4.18 a.
In this test both free surface movements and strain propagation

were taken into account. The mesh is prestrained in the same way as
in the preceding section. Fig. 4.18 b shows the changed free surface
due to rigid translation and fig. 4.19 shows the predicted strain
propagation. The deviations from the exact solution are of the same
magnitude as for the case of 20 elements of equal size (see fig. 4.11).
Note that the automatically determined weight factors are not equal

in all elements due to the non-uniform element size.
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Fig. 4.17 Prediction of free surface movement,

84

AN

\\\\\\\\\\\\\\\\\M

test for rigid longitu-
dianal translation, nodal surface point location according to

the local normal component of the displacement increments,

(a) initial mesh, (b) after 12 steps, (c) after 24 steps, (d)

after 48 steps.



T

Fig. 4.18 Test problem with varying element size, (a) initial mesh,

(b) mesh after 24 steps longitudinal displacement.
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Fig. 4.19 Predicted strain propagation in the case of varying element

size (element mesh of fig. 4.18a).
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In simulations of forming processes it may be necessary to change not only
the surface point coordinates but also those of internal points. These
internal point coordinates may be changed independently from the material
displacement, provided that the shift within each increment is not too
large (say less than half the element size).

A method for determining an optimum finite element mesh after each
increment was presented by Schreurs [44]. This optimum mesh is determined
from an additional linear elastic problem with the same geometry as the
current state of the forming workpiece. A disadvantage of this method is
that a linear elastic problem has to be solved simultaneously during (or
after) each increment. Schreurs also presented a mixed (or arbitrary)
Eulerian - Langrangian method for simulation of forming processes in which
convection due to flow of material through elements is taken into account.
However, he did not carry out numerical tests on the accuracy by which
convection is predicted. From the results that he presented it is not
clear whether or not oscillation or overshoot will be predicted in
simulations similar to those presented in this and in the previous

section.

Another mixed Eulerian - Langrangian method was presented by Haber [21].
This method basically concerns redefining an element mesh in large purely
elastic deformation problems. History dependent irreversible problems can

not be solved by that method.

A method for adding or removing elements was reported by Bonte [11]. By
this method, elements can be added if elements connected to free surfaces
are too much elongated. A disadvantage of the method is that a rather
large disturbance of mechanical equilibrium occurs in the increment where
elements are added or removed, because integration point locations are
discontinuously changed.

Besides, in many cases distortion or elongation of elements can be avoided
by shifting the location of internal points continuously. This can be
carried out by prescribing these shifts or by defining ’internal free

surfaces’.
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V. Applications

Based on the theory presented in the preceding chapters, a finite element
programme called DIEKA has been developed.

Large contributions are supplied by students during the final stage of
their study. Result of that work has been published by Henk Huisman [19]
and Jaap v.d. Lugt [32]. These students contribute largely to the

applications presented in this chapter.

The upsetting process

The first forming process which was simulated is the upsetting process, a
process which can be regarded as a benchmark problem in metal forming.

The upsetting process is defined as the axial compression of an
axisymmetrical body between two rigid plates. The plates are assumed to be
sufficiently rough to suppress slip at the interfaces. Besides, these
plates are assumed to be perfect insulators. At the free cylindrical outer
surface also perfect insulation is considered (natural boundary condition
of the heat transfer equations).

The finite element discretization consists of 48 elements with four nodes.
Isoparametric elements are used with Gaussian numerical integration [51],
and with average dilatation according Nagtegaal et.al. [37]. However, a
modification was applied as to the numerical integration of the
temperature predictions in the case of fast deformation (small time
increments). In that case the contribution of conduction to the
temperature rate is very small compared to the contribution due to plastic
deformation. The undesired numerical effects that give inaccurate
temperature predictions, are illustrated by means of a one dimensional
problem without conduction. One of the boundary nodal points is subjected
to a prescribed jump in temperature. The predicted temperature
distribution is shown in fig. 5.1. All internal nodal temperatures change
due to the coupling between nodal point temperatures. This coupling is not
a result of physical heat transfer but due to the fact that the
interpolation functions are not mutually orthogonal at element level. By
shifting the position of the integration points to the location of the
nodal points, an apparent orthogonalisation of the interpolation functions

is accomplished,
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where WK and WL are the interpolation functions, zn the location of nodal
point n, and N the total number of nodes per element.

Applying the modified numerical integration to the same one dimensional
problem, yields the temperature distribution shown in fig. 5.2.

Except for the prescribed temperature, the nodal temperature remains

unchanged.
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Fig. 5.1 Temperature distribution predicted by isoparametric elements

with Gaussian numerical integration, as a response to a
prescribed temperature jump at R=3, for 6 elements with linear
interpolation and 3 elements with quadratic interpolation

respectively.
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Fig. 5.2 Temperature distribution predicted by isoparametric elements
with integration points located at nodal points, as a response
to a prescribed temperature jump at R=3, for 6 elements with
linear interpolation and 3 elements with quadratic

interpolation respectively.

An illustration of inaccurate temperature predictions that may be obtained
if no modification of the numerical integration is applied, is found by
the numerical analysis of an upsetting problem of T.B. Wertheimer [49].
The undesired numerical effects show up most clearly by the low
temperatures in the area where no plastic deformation occurs.

Before the integration was modified we carried out a similar analysis of
the upsetting process and found the same kind of unrealistic low
temperatures in the ’dead zone’, below the initial temperature. With the
modified numerical integration, these low temperatures vanished.

Note: The modified numerical integration is restricted to the terms
related to the temperature rate. All other terms are integrated using
Gaussian points.

We now return to the simulation of the upsetting process. The material
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used is low carbon steel with code CK 15.
The mechanical material properties are obtained by tensile tests at
several temperatures. The stress—strain curves are shown in fig. 5.3. The

material used is assumed to be isotropic.
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Fig. 5.3 Stress-strain curves of the material used in the upsetting
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process.

Hardening has been taken into account by a yield stress depending on the

plastic strain according to formula

= i <
Ov Ovo if € eh
-(e-e )
h .
o =0+ Ao (l-exp ——) if € > ¢ (5.2)
\Y% VO \Y% eo h

where L on, £y and €_ are parameters depending on the temperature;

they are determined by interpolation between the values given in table 5.1
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Temperature [C]

21 110 160 235 300
initial yield stress 313 284 263 218 193
%o [Mpal
hardening stress 400 350 360 415 450
increment AUV[Mpa]
hardening strain parameters
€ 0.25 0.2 0.20 ;0.17 |0.16
gy 0.022 .022 0.021 ;0.01 ;0.0
Young’ s modulus E = 210000 Mpa
Poisson’s ratio v = 028
coéfficient of thermal expansion =15 » 10_6 C_1
coéfficient of heat conduction A =46 Wem lec!
mass density p = 7830 kg-m_1
Table 5.1 Material data of the upsetting process
The undeformed mesh is shown in fig. 5.4.
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Fig. 5.4 Initial finite element mesh for simulation of the upsetting

process.
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Only a quarter of the cross section is modelled because of symmetry. There
are 126 displacement and 63 temperature degrees of freedom The initial
temperature is 201.-4C, the initial height is 36 mm and the initial
diameter is 18 mm. The total imposed reduction of the height is 16 mm in
1.6 seconds. The analysis was carried out using the mixed
Eulerian-Lagrangian method. The element location is adapted in a way that
too much distortion of elements is avoided whereas the expansion of the
contact surface is continuously taken into account by adapting the surface
point location according to the procedure discussed in section 4.3.2.2.

The deformed mesh is shown in fig. 5.5.

=— deformed mesh

displacement
backward plot

Fig. 5.5 Deformed mesh after upsetting, and displacement backward plot.

In this figure also the ’displacement backward plot’ is given, obtained by
subtracting the total material displacement of the particles that finally
coincide with the nodal points, from the final location of the nodes. The
discrepancy between the shape of the billet in the backward plot and the
initial shape is a measure for the accuracy of the simulation. It can be

observed that in the intersection of the cylindrical free outer surface
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and the contact surface a small piece of material is ’lost’ due to the

incremental expansion of the contact surface.

The predicted temperature and plastic strain distribution are shown by

fig. 5.6 and fig. 5.7 respectively.
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~

Fig. 5.6 Predicted temperature distribution after upsetting.
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Fig. 5.7 Predicted plastic strain distribution after upsetting.

The simulation was carried out in 95 increments.

only one or two iterations were necessary.

Within each increment

Verification of the finite element model can be achieved by comparing the
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numerical results to the results obtained by experimental methods.
The experiment is performed under the same conditions as mentioned above.
The temperature has been measured, at medium height, on the outer surface

of the billet. The results are given in figure 5.8.

It can be seen that the boundary condition of perfect insulation is not
achieved. Therefore it is necessary to correct the experimental results
for heat transfer to the environment.

For the heat transfer to the environment one must know the coefficient of
heat transfer between billet and environment (B)e This coefficient follows
from the expression of the heat flow (®), towards the environment.

When the billet has an almost uniform temperature (T), the heat flow can

be expressed by:

~

ERTLE ¥ e
® = chdt = B(T TO) or
cpvg%
B == (5.3)
T—TO

The temperature correction (ATcorr)’ at time t and temperature T, can now

be written as:

1 t
corr cpV g odt or
- t
corr_ %% “1 J (T_To)dt (5.4)
(T—TO) 0

The experimental results, with the correction of the temperature for heat
loss, are also given in figure 5.8.

The loading time was fast. The heat transfer between billet and
thermocouple is a slow process. This has to be taken into account when
comparing the corrected experimental results to the numerical results.
Therefore it is more reliable to compare the results in the steady state.
For this purpose the numerical analysis was continued, with additional
time steps and no deformation, to achieve the steady state after the

forming process. The results are given in figure 5.8.
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Now, the numerical results and the (corrected) experimental results can be

compared.

The steady state temperature for the experiment was 100.5 C,

and for the

numerical analysis 105.0 C. The difference between these temperatures can

partly be explained by the difference in the measured,

work that has been carried out respectively (see figure 5.9).
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Change of the temperature at medium height on the outer

surface of the billet, during and after upsetting.

and the calculated
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Fig. 5.9 Load—-displacement curve of the upsetting process.

Compared with the results shown in [32], a better agreement between
experiment and finite element simulation is found for the load-
displacement curve. This can mainly be attributed to the improved
approximation of the real hardening behaviour of the steel by taking into
account a strain range without hardening directly after yielding. Besides,
a local refined element mesh has been taken into account near the contact
surface between billet and tool, resulting in a better approximation of
the deformation process in that part where a large deformation gradient

OoCccurs.

The wire drawing process.

The second process simulated is the wire drawing process. First, no
thermal effect nor friction have been taken into account. The finite
element mesh is shown in fig. 5.10. Isoparametric elements with four

nodes are used.
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Fig. 5.10 Finite element mesh for simulation of the wire drawing process.

The reduction is accomplished by suppressing the velocity component normal
to the contact surface between wire and die. The mixed Eulerian-Lagrangian
method was applied. However, the spatial location of the outer surface
hardly changes. Hence a purely Eulerian solution results. The simulation

is carried out from the start up of the process until a stationary state is
achieved. The material used is soft copper. The material properties are

given in table 5.2 and fig. 5.11.
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Fig. 5.11 Stress-strain curve of copper, used in the simulation of

the wire drawing process.
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The material shows a considerable hardening. This has been taken into
account by a two fraction model,

isotropic hardening according to (5.2) and one purely elastic fraction,

one elastic - pl

astic fraction with

resulting in a combined isotropic - kinematic model.

Figure 5.12 shows the predicted equivalent plastic strain distribution for

an increasing number of increments.

It can be obs

erved that the area in

which a stationary state is achieved increases continuously.

The diameter is reduced from 3.25 mm to 3 mm. The corresponding homogeneous

strain is then Zlog(gléé)

predicted strain.

O0e160e This is inde

ed a lower bound of the

Figure 5.13 shows the predicted stress distribution. A highly

inhomogeneous axial stress distribution appeared in the wire after

reduction. This stress distribution will remain in the wire after

unloading (the neutral point is shifted after unloading).

fraction
@1 = 099822 WZ = 000178
Young’ s modulus 120000 [Mpal 120000 [Mpal
Poisson’s ratio 0.35 0.35
initial yield stress 50 [Mpal ©
hardening stress 160 [Mpal -
increment on -
hardening strain parameters
€ 0.1 -
£y 0. -
coefficient of thermal 17 10 [C 1]
expansion
coefficient of heat 365 [Wmc 'l
conduction
mass density 8940 [kg m_3]
specific heat 390 [J kg_l]

Table 5.2 Material

98
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Fig. 5.12 Predicted plastic strain distribution during the start up of

the wire drawing process, (a) after 90 increments, (b) after 140

increments, (c) after 175 increments,

(d) after 210 increments,

(e)

after 345 increments. The length of the arrows correspond with the

total displacement of the material.
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The simulation of the wire drawing process was repeated for the case that
thermal effects and friction are taken into account. The die is now also

part of the finite element mesh as shown in fig. 5.14.

T
\

Fig. 5.14 Finite element mesh for the thermo-mechanically coupled

simulation of the wire drawing process.

Friction has been taken into account by means of a thin layer of elements
at the outer surface of the wire, (special friction elements with
temperature degrees of freedom are not yet available in the programme
DIEKA). In order to avoid numerical problems in these very thin elements,
they are constrained in a way that pure shear occurs in the contact area

between wire and die. In this way, ’plastic friction’ 1is obtained.

The properties of the die and the lubrication layer are given in table 5.3
The yield stress of the lubrication layer has been chosen based on the
difference between the measured drawing force and the drawing force
obtained from the simulation without friction. This difference can be
attributed to friction and is simulated by a uniform shear stress in the

layer.

101



lubrication layer
die (tin)

Young’ s modulus 600000 [Mpa] 45000 [Mpal
Poisson’s ratio 0.28 0.32
yield stress 15 [Mpal o

coefficient of thermal 5. 10°° [c 1] 241 107> ¢}

expansion

coefficient of heat 60 Wm ¢l 65 [Wm c M
conduction
mass density 14000 [kg m 2] 7300 [kg m 2]
specificheat 140 [J kg_ll 220 [J kg_l]

Table 5.3 Material data of the die and lubrication layer.

The resulting temperature distribution after 334 steps 1s shown in fig.
5.15. In the deformation area and lubrication layer an almost stationary
state 1s achieved. However, in the die the temperature distribution is not
yet stationary. This 1s due to the fact that temperature distribution in
the wire is mainly determined by the plastic deformation energy
dissipation whereas the temperature distribution in the die is determined
by conduction. It will take several hundreds of steps more to achieve a
stationary state in the die too. The time steps that are taken correspond
to a velocity of 1 m/s. Calculation of the stationary state in the die can
be accelerated by the following trick. During relatively long time
increments the drawing process is stopped and the coefficient of heat
conduction in the wire is set at zero. In the lubrication layer the
temperature is kept constant at the level just before the process is
stopped. During these long time increments a stationary temperature
distribution in the die is approximated. The final temperature
distribution is given by fig. 5.16.

Note: Natural boundary conditions with respect to heat transfer were taken
into account which means no heat transfer through the boundary of the

mesh.
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24

Fig. 5.15 Predicted temperature distribution of the wire drawing process
after 334 increments (total axial displacement is 3 mm in

0.003 s).

Fig. 5.16 Predicted temperature distribution of the wire drawing process

in the stationary state.
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A steel quenching process.

A process in which phase changes are strongly affecting the quality of a
product is the steel quenching process.

A simulation of a quenching process of a cylindrical bar was carried out.
The bar is assumed to be very long relative to the diameter, hence the
process can be approximated as a one dimensional problem: the internal
state 1s a function of the radial coordinate only.

The investigation with respect to the phase transformation kinetics were
carried out by Nico Verschuren [47]. He also did the programming work and
the simulation of the quenching process.

The description of the phase transformation is based on data obtained from
a Time-Temperature-Transformation (T.T.T.) diagram of the steel
considered. In this diagram the volume fractions of phases are given as a
function of the time at constant temperature (after quick cooling to that
temperature from a high temperature in the austenite area). The phase
transformation at constant temperature can be described by the
Avrami-equation,

_ B !
¥ = WAO (1-exp(-bt™)) + WO (5.5)

where b and n are material parameters depending on the temperature,

¥ is the increasing phase fraction, WAo is the austenite fraction that is
present prior to quenching, and WO is the fraction of the increasing phase
that is present prior to quenching. For the case of transformation from
austenite to ferrite whereas no other phases are present, WO is equal to
1—WAO- The rate of change of

¥ is equal to the critical rate of change because the material is quickly
cooled below the stable transformation temperature (-~ 730°C ). This
critical rate of change is, according to section 3.6, assumed to be a

function of the state variables. Hence the rate of phase change can be

written as

¥ = bn(1l - _E__) [log(1 - Ef——) 1 (n#1)
Ao Ao
. Y-y
¥=b01 - — ) (n=1) (5.6)
Ao

The different phases that may be present during the quenching process
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are austenite, ferrite, pearlite and martensite. The physical and
mechanical properties of ferrite and pearlite are nearly equal and

are therefore considered as a single ferritic phase.

At a temperature between 730°C and 330°C no martensite is formed, hence
only transformation from austenite to the ferritic phase occurs. The values
of the parameters b and n for the austenite-ferrite transformation are
presented as a function of the temperature in fig. 5.17.

The T.T.T. diagram has been simulated with equation (5.6). The result is
given in fig. 5.18. The curves in this figure correspond to 1% ferrite and

99% ferrite respectively. The simulation started with ¥ o:1 and WOZO-
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Fig. 5.17 Values of the parameters n and b in the Avrami phase
transformation equation (5.5), as a function of the

temperature, for steel CKA45.
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Fig. 5.18 Simplified Time Temperature Transformation (T.T.T.) diagram,

simulated with the Avrami equation (5.5).

The transformation from austenite to martensite does not satisfy an
equation similar to (5.5). Transformation to martensite occurs for the
austenite fraction WAms that is still present when the m(artensite)
s(tart) temperature (TmS% 355°C) is reached. The fraction martensite Wm

which is formed, is a function of the temperature to which is cooled

quickly [47],

= - - - i < .
Wm WAmS(l exp ( W(TmS T)) if T TmS (5.7)
The parameter y is equal to O-Oll[C_l] for most steels. If cooling to a
temperature less than TmS is done very quickly, no ferrite is formed and
hence WAms: WAO- In parts of the material where the cooling process is

less fast, a part of the austenite has already transformed to

ferrite-pearlite and less martensite is formed.
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Equation (5.7) describes the transformation after quick cooling followed
by a constant temperature. We have also adopted this equation in the case
of ’continuous cooling’. The rate of change of the martensite fraction can

then be expressed as

¥ = -y exp (—W(Tm -1 T

m Ams
or
Wm: —WA v T .
T<0 (5.8)
WA: WA v T

where WA is the current austenite fraction.

The yield stresses 05 for eachkphase were assumed to be linear functions
of the hardening parameters H (see eqn. 3.6.18 and 3.6.17) for each
phase respectively. This is a sufficiently accurate approximation within
the plastic strain range of 2 or 3 percent, which will occur in the
quenching process.

The steel properties used in the simulation are those of CK45. The

chemical analysis 1s shown in table 5. 4.

mass fraction (percent)

C Si Mn P S

.42 -.50 .15 - .35 .5 - .8 . 035 . 035

Table 5.4 Chemical fractions of steel CK45.
The mechanical and thermal properties are shown in table 5.5.
From the transformation heat and specific heat given in this table,

the parameters rk for each phase are calculated at a reference temperature

of 20°C, using eqn. (3.61). The results are also given in table 5.5.
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phase temperature [C]
0 300 600 900
Young’ s modulus austenite 200000 124000
[Mpal ferrite 210000 193000 165000 120000
martensit 200000 158000
Poisson’s ratio a/f/m 0.3 0.3 0.3 0.3
yield stress a 190 110 30 20
[Mpal f 360 250 40 20
m 1600 1480
hardening rate a 4000 2480
[Mpal f 12600 11580 9900 7200
m 20000 15800
heat conduction a 15.0 25.1
coefficient f 49.0 27.0
Wm ¢l m 43.1 30.1
specific heat a 520 607 650
[J kg_lc_ll f 480 667 760
m 485 670
mass density a 8018 7819 7576
[kg m_3] f 7850 7759 7645
m 7760 7670
transformation heat [J kg_l]
austenite > ferrite -50000 at 730°C
austenite > martensite -80000 at 350°C
internal energy parameter (rk) at a reference temperature of 20 C,
determined from specific heat and transformationheat. [J kg_l]
— austenite 0.
- ferrite -64000.
— martensite =77700.

Table 5.5 Mechanical and thermal properties of steel CK45.
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As observed before, the quenching process has been approximated as a
one—-dimensional problem. In the finite element programme DIEKA, no
one-dimensional elements are available; hence a layer of two-dimensional

axial-symmetric elements has been used.The finite element mesh is shown in

fig. 5.19.

Center line Quter surface

Fig. 5.19 Finite element mesh for simulation of a quenching process

of an ’infinitely long’ steel bar with a diameter of 60 mm.

The nodal degrees of freedom have been coupled in a way that the condition
of an infinite bar is satisfied. A mesh refinement has been applied near
the outer surface of the bar because large gradients are to be expected
there. The diameter of the bar is 60 mm. The bar is quenched in water with
a temperature of 20 C. The heat transition coefficient from the bar to the

water has been assumed to be constant at 5860 Jm_zs_lc_l-
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Fig. 5.20 Predicted temperature distribution in the bar, as a function

of time.

Fig. 5.20 shows the predicted temperature distribution history. Figs. 5.21
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to 5.23 inclusive show the predicted stress distribution history for the

radial,

Fig. 5.21
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Fig. 5.23 Predicted circumferential stress distribution, as a function

of time.

The plastic strain history is shown in fig. 5.24. A little softening due
to transformation can be observed near the outer surface. The propagation
of the ferritic phase is shown in fig. 5.25. The transformation front
coincides with a dip in the stress distribution which can be observed most
clearly in fig. 5.22 for the axial stress.

Fig. 5.26 shows a close-up of the martensite phase propagation in

a thin layer near the outer surface.
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Fig. 5.26 Predicted propagation of the martensite phase (close up of

the area near the outer surface).

The final stress distribution was compared with experimental data
presented by Inoue [23] and theoretical predictions by Inoue and Sjostrom
[45]. The results are given in fig. 5.27. It can be observed that the
predictions obtained from the present model show a fair agreement with the
experimental data. The agreement is even better than with the models of
Inoue and Sjostrom, except for one measured stress point located at the
outer surface. However, the calculated axial stress distribution satisfies
axial equilibrium, but the measured stress is higher or equal to the

calculated
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stress and does not satisfy axial equilibrium. So there may be some doubt

about the accuracy of the stresses measured by Inoue.

The objective of the presented simulation of a steel quenching process is
to show the features of a finite element simulation of phase changes. Not
all phenomena that significantly affect the results have been considered,
as for instance stress dependency of phase changes and transformation
plasticity. Effects of transformation plasticity were taken into account
by Nico Verschuren [47].

The resulting stress distributions are only a few percents different from

those obtained in a case without transformation plasticity.

The computer programme “DIEKA” was also applied to a simulation of a cold
rolling process [35]. A friction/contact element has been developed in
order to predict the deformation of the roll.

The developments as to the simulations of cold rolling are not finished

and therefore no results are presented here.
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VI. Concluding remarks

The mixed Eulerian-Lagrangian finite element method for simulation of
forming process, as presented in this thesis, yields a method to uncouple
material displacements from nodal point displacements. Numerical problems
due to large element distortions, which may occur in the case of an
updated Lagrange approach, can be avoided. Free-surface movements and
history-dependent material properties can be taken into account.

The method allows a simultaneous analysis of workpiece and tool including
slipping friction more easily. This can be accomplished by keeping nodal
points of both parts at the same spatial location, independently from the
actual difference of the tangential velocity components at both sides of
the contact interface. An appropriate description of the friction requires
the development of special friction elements, including convective changes
of the frictional condition and energy dissipation. The development of

this kind of friction elements is part of the current research programme.
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Appendix A

Summary of tensor notation.

In this appendix a summary of the applied tensor notation and properties
of tensors are given. These properties are frame independent. Components
of tensors can be referred to an arbitrary curvilinear coordinate
system.

However, no curvilinear coordinates are used in this paper and hence

in this appendix only components of tensors referred to a Cartesian
frame are given.

The summation convention is adopted with respect to subscript indices.
Most rules are given without proof. More detailed information can

be found in [9, 12, 40, 52].

A vector will be denoted by a subscript wiggle and can be expressed

in components referred to a Cartesian reference frame by

a=a, e, (A1)
~ 1 ~1

where e, are mutually orthogonal unit base vectors.
The scalar product of two vectors a and b is denoted by a dot and can be

expressed in the components by

a * b =a. b. (A 2)
= ~ i vi

The result is a scalar and
ae® b=Dbeea (A 3)

The magnitude of a vector a is denoted as

hall=(aea)’™ (A 4)

The scalar product is related to the magnitude of the vectors a and b and

the angle ¢ between the vectors, according to

(% . ?) =llall I bIl cos ¢ (A 5)

The vector product (cross product) of two vectors is a vector defined by

axb=I11al NIbll sin¢ n (A 6)
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where n is a vector of unit length normal to
a and b and pointing in the direction that a right hand screw will

move if turned from a to b through the angle ¢

The dyadic product of two vectors is denoted by a b o The following

multiplication operations are defined

(@b)=c=ale-c)=abe-c (A7)
asc)=(@eb)c=arbec (A 8)
(@)« (cd=albec)d=abecd (A9)
(a b) (cd) =(aec) (bed)=aec bed (A 10)

The trace of a dyadic product is the scalar product, denoted as
tr (ab) =a b (A 11)

A tensor is a linear operator that transfers a vector to another vector.

This operation is written as

c=A-b (A 12)
A tensor is denoted by an underscore. It is a linear operator hence

A e (ea + Bb) = A e a +BA D (A 13)

Similar to vectors, we can define components of a tensor. From (A 12)

follows that

e, ec=c, —e, «» Aee_ b, (A 14)
~ - ~J J

The components of A are defined by

A.. = e, « Ao e, (A 15)
1] ~1 - ~J

and an operation according to (A 12) can be replaced by a transfer of the

components

c, = A . b, (A 16)
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A tensor can be expressed as a linear combination of dyadic products

of the base vectors

A=A (A 17)

-
1J ~1 ~J

Consequently the trace of a tensor can be defined as a linear operator

which, according to (A 11), is given by

tr A=A.. e, o e. =A_, (A 18)
- ij ~1i ~]j ii

where

e, * e, =348,.. =1 if 1= (A 19)

=0 if i # ]

The symbol aij is known as the kronecker delta.

As a tensor is a linear combination of dyadic products it is called a
second order tensor. A vector is also denoted as a first order tensor.
Tensors of higher order can be defined similarly.

A third order tensor is denoted by a subscript wiggle and an underscore

=Bk S %5 %

RO

A third order tensor is a linear operator that transfers a vector
to a second order tensor by

A=Bea (A 20)

or transfers a second order tensor to a vector by

c=B: A (A 21)

A fourth order tensor is denoted by a double underscore. The following

operations can be performed:

A=D:C (A 22)
B=D-a (A 23)
E=D-C (A 24)
etc.
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Of course a dyadic product of two vectors is a second order tensor and a
triadic product of three vectors is a third order tensor, etc.

The multiplication operations (A 7) through (A 10) also apply to tensors
of higher order.

The transpose of a second order tensor is denoted by a superscript capital

T and satisfies the following rules

T.a:aoé (AZS)

>

T =A.,, e, e.
Ji ~1 ~]

>

(A 26)

The second order identity tensor is denoted by the symbol

I and satisfies the condition that for any vector a

The components of I are given by the kronecker delta

I =38..e. e. =e, e. (A 27)
= ij =i <] -1 <i

and

tr I =3 (A 28)

The trace of a product of two second order tensors satisfies relation

tr (A «B) = A: B (A 29)

The determinant of a second order tensor is defined by

det A =1 (tr (A7 - L tr (A) tr (AsA) + % tr (AsAsA)

™MW

det [A..] = A., cofactor A, (A 30)
ij i

1 il 1

3
A12 cofactor [AiZ] = .2 Ai3 cofactor [Ai3]

I
™MW

The fourth order identity tensor is denoted by the symbol H and is defined

by the condition that for any second order tensor A
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é:

jus

A (A 31)

This fourth order identity tensor can be expressed as

370081 25 % (A 32)
where Hijkﬂ = aik ajﬂ

The product of H and I satisfies the condition

HeI=4H (A 33)

Multiplication rules of tensor are not commutative. The following rule can

be applied for permutation of products of tensors

.ch B (A 34)

AOB.C_::(A.

[f==;

This rule cannot be found in the references [9, 12, 42, 50] and hence the

proof is given below

T

(AOI;I.C_:):B:

(Aij °i gj * 6km aﬂn % €2 Sm Sn ° qu 9p gq) Brs °r S5~

A..e. (e, e ) 8., e (e oe ) (e oe ) (e o= )C B
ij ~i "~k ~m Jjk ~n -~n ~p ~m ~r ~q ~s" gp Trs

Aik i % ° Bms °m Ss ° an 9q Sn ~

A.BQC q.eodo

Note that the right hand side of A 34 is not associative.

Similarily the following rule can be proven:

AeBeC=B: (Al «HeC) (AS35)

Tensors may be functions of other tensors (scalars, vectors, higher
order tensors), and we can define (partial) derivatives. Say that f is a
scalar function of a vector x, than de derivative with respect to x is

defined by

6] of
§'f_&(f)_gi§i (A 36)
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The gradient operator % is a vector operator that associates a vector with

a scalar function.

We can also subject a tensor to the gradient operator

5 A BA |

_ 9 _ _ Jk
VA= ax &) =& ox,  “i 8x; =) °k (A 37)

The result is a tensor of one order higher. All multiplication rules
that are defined for vectors (and dyadic products) hold for the gradient

operator. Dyadic products are not commutative hence
% A #A é (A 38)
The arrow points to the tensor that is subjected to the operation.

The left hand side is called the pre-gradient and the right hand side
the post-gradient. The post-gradient is defined by

- - Jk
" ax. Si o%. €5 %k Si (A 39)

| >

i - a_

_ a4 _ af
§A =55 (f) =e; i A, (A 40)
A ij
dB
3 _ ke
UpB=ar BT S5 . % e (A 41)
A ij
dB dB
_ - _ k¢
BV, = A - 5;;3 °k ¢ i & (A 42)

From (A 42) it follows that

We define

an ~ i %xj Sk S S1 €j (A 44)
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K is a special tensor with the property that for every second order

tensor C

K: C=C: K= QT (A
When A is a function of B and B is a function of C then

0A O0A OB

B (A

The gradient of a scalar product of two vectors satisfies a product

similar to scalar derivatives

a (g . ?)
ox

TR Yaebeaend o

This rule cannot be extended to higher order tensors

8 (A« B) A B

—ec  “e TP At A

The correct rule can be derived from (A 42)

8 (A*B) 8 (AsB)

aC - ac..  Si%j

C i
or (A
8 (AeB) 0A 9B

ac  ~ac.. "B Sy tActa %

= ij ij

45)

46)

rule

47)

48)

49)

The last term in (A 49) is equal to the last term in (A 48), but the first

term of the right hand side of (A 49) is not equal to the corresponding

term in (A 48). With (A 34) we can write

A A T, (A

[ ]
It
I
=
[ ]
If==
[ ]
It

Substitution in (A 49) yields

8 (A« B)
aC =02

- (A

50)

51)

The scalar product of two second order tensors satisfies the relation
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== C 2 = (A 52)

The derivative of the determinant of a second order tensor satisfies

the relation

0 det A
2 1T (A 53)
T = (det A) (A )

This relation follows from (A 30)

d det A
aA = cofactor [Aij] e. gj
= det [A]l A,, e, e,
- J1 ~1 ~]
—det A (A DT
Note that
A o1 cofactor [A,,] (A 54)
ij  det [A] Ji
We will write
(A—l)T _ é_T (A 55)

The derivative of the inverse of a second order tensor can be written as

-1
oA _ _A—l « H e A—T (A 56)
oA = = =
This relation follows from (A 51) with B = é_l
5 (AeA ) a1 T oA~ !
T Cm e WA H sA
and hence by multiplication with é_lo
-1
A
- -1 -T
I an - A ge-A
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Appendix B.

Internal energy and free energy.
The internal energy is a function of C and the entropy s
e =e (C, s) (B 1)

The free energy F is assumed to be a function of C and T and is related to

e by
F=FI(C, T) =e -Ts (B 2)

Hence with C and T as independent state variables

8C 'T ~ " aC s as 'c ac T_T(B_C_I)T

oF _ . Oe de as ) 3s (B 3)

where according (3.3.18)

_ e

T= 3s

Hence (B 4)
oF | _ , Be

(o)t = Uac s

With (B 2) we can write

oF | _ . de 8s \ . . . 08s (B 5)
(51 )c= Cae e Car de = T (o )¢
or

aF _ 8s \ . . . 8s ., _ _ (B 6)
( 3T )C =T ( 3T )C s -T ( 3T )C = -s
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Appendix C.

Elaborations referred to isotropic material.

With (A 34) and (A 35) we find that

w
.
[f==;
.
Ivs]
e
@]
w
.
[f==;
.
[os]
I

and

(BT «H- BT) (9_1 «H- 9_1) (B+H-e-B)-=

B emeB): (Clee e.c.e.oCl)y: (BeHSeB=

= a5 < 1 €5 %1 &5 ° = b e4de*>b

Bl e clec c.eB B ee, e, «CleB=

- = <i <y = = ~i <] = -

Blec e +B B ec, e, «B I =

= i €5 % 2 $i € =

B_1 e e .* e, e, o e e. e B, e e
kl <k ~1 ~1 ~j mn ~m ~n SI ~I ~S ~1 ~j tu ~u ~t
-1 -1

Bei %k %n Byn Bir Sr St By

B_% B e e e B. B_1 =
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Dankwoord

Het 1in dit proefschrift gepresenteerde onderzoek is tot stand gekomen
dankzij de bijdragen, inspanning en steun van velen; verschillende studen-
ten (die inmiddels zijn afgestudeerd) hebben belangrijke delen van het
eindige-elementen—programma ontwikkeld. Bij de gepresenteerde simulaties
heb ik met name gebruik gemaakt van de programmadelen die zijn ontwikkeld
door Jaap van der Lugt (thermo-mechanische koppeling) en door Nico Ver-—
schuren (fasetransformaties).

Aan de uitvoering van simulaties en de presentatie van de resultaten heeft
Joop Brinkman een waardevolle bijdrage geleverd. Bij de grafische verwer-
king van de resultaten is dankbaar gebruik gemaakt van de door Ruud Spie-
ring ontwikkelde programmatuur.

De experimenten zijn op accurate wijze uitgevoerd door Henk van der Veen.
De aanzet tot het schrijvem van dit proefschrift is gegeven door prof.
Rijken. Zijn enthousiasme en fysisch inzicht hebben inspirerend gewerkt.
Van de theorie&n van prof. Besseling is dankbaar gebruik gemaakt, zijn
inzichten liggen ten grondslag aan een belangrijk deel van dit proef-
schrift.

De samenwerking met het Researchlaboratorium van Hoogovens is als zeer
stimulerend ervaren, vooral doordat de ontwikkelde simulatiemethode toe-
pasbaar blijkt te zijn bij o.a. het onderzoek aan walsprocessen.

Het afdelingsbureau van WB heeft een zeer gewaardeerde bijdrage geleverd
aan de afwerking en de uitgave van het proefschrift. Harry Slaghuis heeft
het een en ander 'soepel geregeld'. Het typewerk is verzorgd door Wil Keu-
ter en Carola Bouwens, de vele ingewikkelde formules hebben zij op zeer
kundige wijze verwerkt.

Joop Jasperse heeft enige figuren getekend.

Het manuscript is door mevr. Jalloh gekorrigeerd op spellingsfouten en an-
dere inbreuken op de Engelse taal.

Allen die op enigerlei wijze hebben bijgedragen aan de realisatie van dit
proefschrift wil ik hierbij hartelijk danken. In het bijzonder wil ik mijn
echtgenote Marijke bedanken voor haar ondersteuning en begrip tijdens de

vele avond- en nachturen die ik aan het schrijfwerk heb besteed.



STELLINGEN

behorende bij het proefschrift

ON THE SIMULATION OF THERMO-MECHANICAL FORMING PROCESSES

Bij vervanging van een materi€le afgeleide van een objectieve tensor
door de Jaumann afgeleide in een continuumtheorie gebaseerd op
infinitesimale verplaatsingen, wordt hooguit een uitbreiding naar
grote rotaties verkregen terwijl aan de vervormingen nog steeds de eis

moet worden gesteld dat deze infinitesimaal zijn.

Kinematische versteviging kan, ook bilj grote vervormingen, goed
beschreven worden met een fractiemodel bestaande uit een elastisch -
ideaal plastische fractie en een zuiver elastische fractie, mits de

elastische fractie grote elastische vervormingen goed kan beschri jven.

Dit proefschrift, hoofdstuk III.

Bij een Eulerse of een gemengd Eulerse-Lagrangiaanse
eindige-elementensimulatie van vormgevingsprocessen moeten, ten
opzichte van een ’updated’ Lagrangiaanse methode, extra convectieve
termen worden meegenomen waardoor afgeleiden van een orde hoger
geintroduceerd worden. Het is echter niet noodzakeli jk ook een

hogere orde-continuiteit van de interpolatiefuncties te eisen.

Dit proefschrift, hoofdstuk IV.

Numerieke instabiliteiten die kunnen optreden bij een
eidige-elementen-simulatie van grote vervormingsprocessen volgens een
gemengde Eulerse-Lagrangiaanse methode, kunnen worden voorkomen door

invoering van ’local smoothing’ en gewogen ’global smoothing’.

Dit proefschrift, hoofdstuk IV.

Bij simulatie met de eindige-elementenmethode van thermische processen



II

waarbij snelle lokale temperatuursveranderingen optreden, kunnen
onrealistische oscillaties in de berekende temperatuurverdeling worden
voorkomen door de integratiepunten in de knooppunten te kiezen. Bij
rechthoekige vier-knoops elementen is de methode dan geli jkwaardig aan

de eindige-differentiemethode.

In de Verenigde Staten vindt de bewering dat door invoering van
soclale voorzieningen de sociale problemen zijn toegenomen, veel steun
in conservatieve kringen. Deze bewering zou nader onderzocht moeten
worden door na te gaan of in landen met een hoger niveau van sociale
voorzieningen dan in de V.S. de sociale problemen meer zijn toegenomen
en in landen met een veel lager niveau van sociale voorzieningen de

soclale problemen minder zijn toegenomen.

F. Verhagen, Kruistocht tegen de verzorgingsstaat, Intermediair
2le jaargang nr. 49, 6 december 1985, n.a.v. Charles Murray’s boek
”Losing Ground, American social policy 1950-1980”.

Uit een onderzoek van de universiteit van Maastricht naar
ski-ongevallen 1s gebleken, dat de kans op ernstig letsel voor skiérs
die alcohol hebben gebruikt kleiner is, dan voor skiérs die geen
alcohol hebben gebruikt. Niet de kans op letsel voor de
alcoholgebruiker maar de kans op het veroorzaken van een ongeval zou

voorop moeten staan bij het bepalen van risico’s van alcoholgebruik.

Voor het onderwi jspersoneel is een extra salariskorting van kracht
teneinde het tekort op de begroting van het Ministerie van Onderwi js
en Wetenschappen te beperken. Op grond van soortgeli jke overwegingen
zouden de ambtenaren van Ri jkswaterstaat een deel van hun salaris
moeten afstaan vanwege de tekorten op de begroting voor de
Oosterscheldedam, zou het marinepersoneel moeten inleveren teneinde de
kosten van de te duur uitgevallen Walrusonderzeé€rs te compenseren en
zouden de ambtenaren van Economische Zaken het R.S.V.-debéacle

moeten betalen.

Veel CAD-systemen zijn niet veel meer dan electronische tekenmachines.



Een voordeel ten opzichte van een mechanische tekenmachine is dat

zowel potlood als vlakgum minder snel slijten.
10. Het beleid van het Ministerie van Economische Zaken met betrekking tot
de prijs van het aardgas vertoont grote geli jkenis met de handel in

drugs; eerst wordt het produkt tegen een lage prijs aangeboden.

Nadat men er aan verslaafd is, wordt de prijs sterk verhoogd.

Enschede, 20 juni 1986 Han Huetink
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